Skip to main content
Solve for V
Tick mark Image
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

iℏ\frac{\mathrm{d}(\Psi )}{\mathrm{d}t}\times 2m=\left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}\times 2m+V\Psi \times 2m
Multiply both sides of the equation by 2m.
2iℏ\frac{\mathrm{d}(\Psi )}{\mathrm{d}t}m=\left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}\times 2m+V\Psi \times 2m
Multiply i and 2 to get 2i.
2iℏ\frac{\mathrm{d}(\Psi )}{\mathrm{d}t}m=\frac{-ℏ^{2}\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}}{2m}\times 2m+V\Psi \times 2m
Express \left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}} as a single fraction.
2iℏ\frac{\mathrm{d}(\Psi )}{\mathrm{d}t}m=\frac{-ℏ^{2}\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}\times 2}{2m}m+V\Psi \times 2m
Express \frac{-ℏ^{2}\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}}{2m}\times 2 as a single fraction.
2iℏ\frac{\mathrm{d}(\Psi )}{\mathrm{d}t}m=\frac{-ℏ^{2}\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}}{m}m+V\Psi \times 2m
Cancel out 2 in both numerator and denominator.
2iℏ\frac{\mathrm{d}(\Psi )}{\mathrm{d}t}m=\frac{-ℏ^{2}\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}m}{m}+V\Psi \times 2m
Express \frac{-ℏ^{2}\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}}{m}m as a single fraction.
2iℏ\frac{\mathrm{d}(\Psi )}{\mathrm{d}t}m=-ℏ^{2}\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}+V\Psi \times 2m
Cancel out m in both numerator and denominator.
-ℏ^{2}\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}+V\Psi \times 2m=2iℏ\frac{\mathrm{d}(\Psi )}{\mathrm{d}t}m
Swap sides so that all variable terms are on the left hand side.
V\Psi \times 2m=2iℏ\frac{\mathrm{d}(\Psi )}{\mathrm{d}t}m+ℏ^{2}\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}
Add ℏ^{2}\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}} to both sides.
2m\Psi V=0
The equation is in standard form.
V=0
Divide 0 by 2\Psi m.