Solve for V
\left\{\begin{matrix}V=0\text{, }&m\neq 0\\V\in \mathrm{C}\text{, }&\Psi =0\text{ and }m\neq 0\end{matrix}\right.
Solve for m
m\neq 0
\Psi =0\text{ or }V=0
Share
Copied to clipboard
iℏ\frac{\mathrm{d}(\Psi )}{\mathrm{d}t}\times 2m=\left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}\times 2m+V\Psi \times 2m
Multiply both sides of the equation by 2m.
2iℏ\frac{\mathrm{d}(\Psi )}{\mathrm{d}t}m=\left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}\times 2m+V\Psi \times 2m
Multiply i and 2 to get 2i.
2iℏ\frac{\mathrm{d}(\Psi )}{\mathrm{d}t}m=\frac{-ℏ^{2}\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}}{2m}\times 2m+V\Psi \times 2m
Express \left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}} as a single fraction.
2iℏ\frac{\mathrm{d}(\Psi )}{\mathrm{d}t}m=\frac{-ℏ^{2}\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}\times 2}{2m}m+V\Psi \times 2m
Express \frac{-ℏ^{2}\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}}{2m}\times 2 as a single fraction.
2iℏ\frac{\mathrm{d}(\Psi )}{\mathrm{d}t}m=\frac{-ℏ^{2}\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}}{m}m+V\Psi \times 2m
Cancel out 2 in both numerator and denominator.
2iℏ\frac{\mathrm{d}(\Psi )}{\mathrm{d}t}m=\frac{-ℏ^{2}\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}m}{m}+V\Psi \times 2m
Express \frac{-ℏ^{2}\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}}{m}m as a single fraction.
2iℏ\frac{\mathrm{d}(\Psi )}{\mathrm{d}t}m=-ℏ^{2}\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}+V\Psi \times 2m
Cancel out m in both numerator and denominator.
-ℏ^{2}\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}+V\Psi \times 2m=2iℏ\frac{\mathrm{d}(\Psi )}{\mathrm{d}t}m
Swap sides so that all variable terms are on the left hand side.
V\Psi \times 2m=2iℏ\frac{\mathrm{d}(\Psi )}{\mathrm{d}t}m+ℏ^{2}\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}}
Add ℏ^{2}\frac{\mathrm{d}(\Psi )}{\mathrm{d}x^{2}} to both sides.
2m\Psi V=0
The equation is in standard form.
V=0
Divide 0 by 2\Psi m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}