Solve for M
M=c\left(in+1\right)
c\neq 0\text{ and }n\neq 0
Solve for c
\left\{\begin{matrix}c=\frac{M}{in+1}\text{, }&M\neq 0\text{ and }n\neq i\text{ and }n\neq 0\\c\neq 0\text{, }&M=0\text{ and }n=i\end{matrix}\right.
Share
Copied to clipboard
in=\frac{M}{c}-1
Multiply both sides of the equation by n.
in=\frac{M}{c}-\frac{c}{c}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{c}{c}.
in=\frac{M-c}{c}
Since \frac{M}{c} and \frac{c}{c} have the same denominator, subtract them by subtracting their numerators.
\frac{M-c}{c}=in
Swap sides so that all variable terms are on the left hand side.
M-c=inc
Multiply both sides of the equation by c.
M=inc+c
Add c to both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}