Evaluate
\frac{926510094425920A_{1}}{617673396283947}+i
Expand
\frac{926510094425920A_{1}}{617673396283947}+i
Share
Copied to clipboard
i+A_{1}\left(\frac{3}{3}+\frac{1}{3}\right)\left(1+\frac{1}{3^{2}}\right)\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Convert 1 to fraction \frac{3}{3}.
i+A_{1}\times \frac{3+1}{3}\left(1+\frac{1}{3^{2}}\right)\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Since \frac{3}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
i+A_{1}\times \frac{4}{3}\left(1+\frac{1}{3^{2}}\right)\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Add 3 and 1 to get 4.
i+A_{1}\times \frac{4}{3}\left(1+\frac{1}{9}\right)\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Calculate 3 to the power of 2 and get 9.
i+A_{1}\times \frac{4}{3}\left(\frac{9}{9}+\frac{1}{9}\right)\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Convert 1 to fraction \frac{9}{9}.
i+A_{1}\times \frac{4}{3}\times \frac{9+1}{9}\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Since \frac{9}{9} and \frac{1}{9} have the same denominator, add them by adding their numerators.
i+A_{1}\times \frac{4}{3}\times \frac{10}{9}\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Add 9 and 1 to get 10.
i+A_{1}\times \frac{4\times 10}{3\times 9}\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Multiply \frac{4}{3} times \frac{10}{9} by multiplying numerator times numerator and denominator times denominator.
i+A_{1}\times \frac{40}{27}\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Do the multiplications in the fraction \frac{4\times 10}{3\times 9}.
i+A_{1}\times \frac{40}{27}\left(1+\frac{1}{81}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Calculate 3 to the power of 4 and get 81.
i+A_{1}\times \frac{40}{27}\left(\frac{81}{81}+\frac{1}{81}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Convert 1 to fraction \frac{81}{81}.
i+A_{1}\times \frac{40}{27}\times \frac{81+1}{81}\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Since \frac{81}{81} and \frac{1}{81} have the same denominator, add them by adding their numerators.
i+A_{1}\times \frac{40}{27}\times \frac{82}{81}\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Add 81 and 1 to get 82.
i+A_{1}\times \frac{40\times 82}{27\times 81}\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Multiply \frac{40}{27} times \frac{82}{81} by multiplying numerator times numerator and denominator times denominator.
i+A_{1}\times \frac{3280}{2187}\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Do the multiplications in the fraction \frac{40\times 82}{27\times 81}.
i+A_{1}\times \frac{3280}{2187}\left(1+\frac{1}{6561}\right)\left(1+\frac{1}{3^{16}}\right)
Calculate 3 to the power of 8 and get 6561.
i+A_{1}\times \frac{3280}{2187}\left(\frac{6561}{6561}+\frac{1}{6561}\right)\left(1+\frac{1}{3^{16}}\right)
Convert 1 to fraction \frac{6561}{6561}.
i+A_{1}\times \frac{3280}{2187}\times \frac{6561+1}{6561}\left(1+\frac{1}{3^{16}}\right)
Since \frac{6561}{6561} and \frac{1}{6561} have the same denominator, add them by adding their numerators.
i+A_{1}\times \frac{3280}{2187}\times \frac{6562}{6561}\left(1+\frac{1}{3^{16}}\right)
Add 6561 and 1 to get 6562.
i+A_{1}\times \frac{3280\times 6562}{2187\times 6561}\left(1+\frac{1}{3^{16}}\right)
Multiply \frac{3280}{2187} times \frac{6562}{6561} by multiplying numerator times numerator and denominator times denominator.
i+A_{1}\times \frac{21523360}{14348907}\left(1+\frac{1}{3^{16}}\right)
Do the multiplications in the fraction \frac{3280\times 6562}{2187\times 6561}.
i+A_{1}\times \frac{21523360}{14348907}\left(1+\frac{1}{43046721}\right)
Calculate 3 to the power of 16 and get 43046721.
i+A_{1}\times \frac{21523360}{14348907}\left(\frac{43046721}{43046721}+\frac{1}{43046721}\right)
Convert 1 to fraction \frac{43046721}{43046721}.
i+A_{1}\times \frac{21523360}{14348907}\times \frac{43046721+1}{43046721}
Since \frac{43046721}{43046721} and \frac{1}{43046721} have the same denominator, add them by adding their numerators.
i+A_{1}\times \frac{21523360}{14348907}\times \frac{43046722}{43046721}
Add 43046721 and 1 to get 43046722.
i+A_{1}\times \frac{21523360\times 43046722}{14348907\times 43046721}
Multiply \frac{21523360}{14348907} times \frac{43046722}{43046721} by multiplying numerator times numerator and denominator times denominator.
i+A_{1}\times \frac{926510094425920}{617673396283947}
Do the multiplications in the fraction \frac{21523360\times 43046722}{14348907\times 43046721}.
i+A_{1}\left(\frac{3}{3}+\frac{1}{3}\right)\left(1+\frac{1}{3^{2}}\right)\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Convert 1 to fraction \frac{3}{3}.
i+A_{1}\times \frac{3+1}{3}\left(1+\frac{1}{3^{2}}\right)\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Since \frac{3}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
i+A_{1}\times \frac{4}{3}\left(1+\frac{1}{3^{2}}\right)\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Add 3 and 1 to get 4.
i+A_{1}\times \frac{4}{3}\left(1+\frac{1}{9}\right)\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Calculate 3 to the power of 2 and get 9.
i+A_{1}\times \frac{4}{3}\left(\frac{9}{9}+\frac{1}{9}\right)\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Convert 1 to fraction \frac{9}{9}.
i+A_{1}\times \frac{4}{3}\times \frac{9+1}{9}\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Since \frac{9}{9} and \frac{1}{9} have the same denominator, add them by adding their numerators.
i+A_{1}\times \frac{4}{3}\times \frac{10}{9}\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Add 9 and 1 to get 10.
i+A_{1}\times \frac{4\times 10}{3\times 9}\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Multiply \frac{4}{3} times \frac{10}{9} by multiplying numerator times numerator and denominator times denominator.
i+A_{1}\times \frac{40}{27}\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Do the multiplications in the fraction \frac{4\times 10}{3\times 9}.
i+A_{1}\times \frac{40}{27}\left(1+\frac{1}{81}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Calculate 3 to the power of 4 and get 81.
i+A_{1}\times \frac{40}{27}\left(\frac{81}{81}+\frac{1}{81}\right)\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Convert 1 to fraction \frac{81}{81}.
i+A_{1}\times \frac{40}{27}\times \frac{81+1}{81}\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Since \frac{81}{81} and \frac{1}{81} have the same denominator, add them by adding their numerators.
i+A_{1}\times \frac{40}{27}\times \frac{82}{81}\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Add 81 and 1 to get 82.
i+A_{1}\times \frac{40\times 82}{27\times 81}\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Multiply \frac{40}{27} times \frac{82}{81} by multiplying numerator times numerator and denominator times denominator.
i+A_{1}\times \frac{3280}{2187}\left(1+\frac{1}{3^{8}}\right)\left(1+\frac{1}{3^{16}}\right)
Do the multiplications in the fraction \frac{40\times 82}{27\times 81}.
i+A_{1}\times \frac{3280}{2187}\left(1+\frac{1}{6561}\right)\left(1+\frac{1}{3^{16}}\right)
Calculate 3 to the power of 8 and get 6561.
i+A_{1}\times \frac{3280}{2187}\left(\frac{6561}{6561}+\frac{1}{6561}\right)\left(1+\frac{1}{3^{16}}\right)
Convert 1 to fraction \frac{6561}{6561}.
i+A_{1}\times \frac{3280}{2187}\times \frac{6561+1}{6561}\left(1+\frac{1}{3^{16}}\right)
Since \frac{6561}{6561} and \frac{1}{6561} have the same denominator, add them by adding their numerators.
i+A_{1}\times \frac{3280}{2187}\times \frac{6562}{6561}\left(1+\frac{1}{3^{16}}\right)
Add 6561 and 1 to get 6562.
i+A_{1}\times \frac{3280\times 6562}{2187\times 6561}\left(1+\frac{1}{3^{16}}\right)
Multiply \frac{3280}{2187} times \frac{6562}{6561} by multiplying numerator times numerator and denominator times denominator.
i+A_{1}\times \frac{21523360}{14348907}\left(1+\frac{1}{3^{16}}\right)
Do the multiplications in the fraction \frac{3280\times 6562}{2187\times 6561}.
i+A_{1}\times \frac{21523360}{14348907}\left(1+\frac{1}{43046721}\right)
Calculate 3 to the power of 16 and get 43046721.
i+A_{1}\times \frac{21523360}{14348907}\left(\frac{43046721}{43046721}+\frac{1}{43046721}\right)
Convert 1 to fraction \frac{43046721}{43046721}.
i+A_{1}\times \frac{21523360}{14348907}\times \frac{43046721+1}{43046721}
Since \frac{43046721}{43046721} and \frac{1}{43046721} have the same denominator, add them by adding their numerators.
i+A_{1}\times \frac{21523360}{14348907}\times \frac{43046722}{43046721}
Add 43046721 and 1 to get 43046722.
i+A_{1}\times \frac{21523360\times 43046722}{14348907\times 43046721}
Multiply \frac{21523360}{14348907} times \frac{43046722}{43046721} by multiplying numerator times numerator and denominator times denominator.
i+A_{1}\times \frac{926510094425920}{617673396283947}
Do the multiplications in the fraction \frac{21523360\times 43046722}{14348907\times 43046721}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}