i + 5 : 1 - 6 | - \sqrt { 9 } + ( 1 - \sqrt { 2 } ) ^ { 0 } - ( - 3 )
Evaluate
-1+i
Real Part
-1
Share
Copied to clipboard
i+5-6|-\sqrt{9}+\left(1-\sqrt{2}\right)^{0}-\left(-3\right)|
Anything divided by one gives itself.
i+5-6|-3+\left(1-\sqrt{2}\right)^{0}-\left(-3\right)|
Calculate the square root of 9 and get 3.
i+5-6|-3+1-\left(-3\right)|
Calculate 1-\sqrt{2} to the power of 0 and get 1.
i+5-6|-2-\left(-3\right)|
Add -3 and 1 to get -2.
i+5-6|-2+3|
The opposite of -3 is 3.
i+5-6|1|
Add -2 and 3 to get 1.
i+5-6\times 1
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of 1 is 1.
i+5-6
Multiply 6 and 1 to get 6.
-1+i
Do the additions.
Re(i+5-6|-\sqrt{9}+\left(1-\sqrt{2}\right)^{0}-\left(-3\right)|)
Anything divided by one gives itself.
Re(i+5-6|-3+\left(1-\sqrt{2}\right)^{0}-\left(-3\right)|)
Calculate the square root of 9 and get 3.
Re(i+5-6|-3+1-\left(-3\right)|)
Calculate 1-\sqrt{2} to the power of 0 and get 1.
Re(i+5-6|-2-\left(-3\right)|)
Add -3 and 1 to get -2.
Re(i+5-6|-2+3|)
The opposite of -3 is 3.
Re(i+5-6|1|)
Add -2 and 3 to get 1.
Re(i+5-6\times 1)
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of 1 is 1.
Re(i+5-6)
Multiply 6 and 1 to get 6.
Re(-1+i)
Do the additions in i+5-6.
-1
The real part of -1+i is -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}