Solve for m
m=\left(16-4i\right)n
n\neq 0
Solve for n
n=\left(\frac{1}{17}+\frac{1}{68}i\right)m
m\neq 0
Share
Copied to clipboard
i+\frac{\frac{m}{n}}{4}-\sqrt{16}=0
Calculate \frac{1}{2} to the power of -2 and get 4.
i+\frac{\frac{m}{n}}{4}-4=0
Calculate the square root of 16 and get 4.
\frac{\frac{m}{n}}{4}-4=-i
Subtract i from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{m}{n}}{4}=-i+4
Add 4 to both sides.
\frac{m}{n}=-4i+16
Multiply both sides of the equation by 4.
m=n\times \left(-4i\right)+n\times 16
Multiply both sides of the equation by n.
m=\left(16-4i\right)n
Combine n\times \left(-4i\right) and n\times 16 to get \left(16-4i\right)n.
i+\frac{\frac{m}{n}}{4}-\sqrt{16}=0
Calculate \frac{1}{2} to the power of -2 and get 4.
i+\frac{\frac{m}{n}}{4}-4=0
Calculate the square root of 16 and get 4.
\frac{\frac{m}{n}}{4}-4=-i
Subtract i from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{m}{n}}{4}=-i+4
Add 4 to both sides.
\frac{m}{n}=-4i+16
Multiply both sides of the equation by 4.
m=n\times \left(-4i\right)+n\times 16
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n.
m=\left(16-4i\right)n
Combine n\times \left(-4i\right) and n\times 16 to get \left(16-4i\right)n.
\left(16-4i\right)n=m
Swap sides so that all variable terms are on the left hand side.
\frac{\left(16-4i\right)n}{16-4i}=\frac{m}{16-4i}
Divide both sides by 16-4i.
n=\frac{m}{16-4i}
Dividing by 16-4i undoes the multiplication by 16-4i.
n=\left(\frac{1}{17}+\frac{1}{68}i\right)m
Divide m by 16-4i.
n=\left(\frac{1}{17}+\frac{1}{68}i\right)m\text{, }n\neq 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}