Evaluate
\frac{157}{20}+i=7.85+i
Real Part
\frac{157}{20} = 7\frac{17}{20} = 7.85
Share
Copied to clipboard
i+\frac{3}{5\left(-4\right)}-7-\left(-15\right)
Express \frac{\frac{3}{5}}{-4} as a single fraction.
i+\frac{3}{-20}-7-\left(-15\right)
Multiply 5 and -4 to get -20.
i-\frac{3}{20}-7-\left(-15\right)
Fraction \frac{3}{-20} can be rewritten as -\frac{3}{20} by extracting the negative sign.
-\frac{3}{20}-7+i-\left(-15\right)
Combine the real and imaginary parts in i-\frac{3}{20}-7.
-\frac{143}{20}+i-\left(-15\right)
Add -\frac{3}{20} to -7.
-\frac{143}{20}+i+15
The opposite of -15 is 15.
-\frac{143}{20}+15+i
Combine the real and imaginary parts in numbers -\frac{143}{20}+i and 15.
\frac{157}{20}+i
Add -\frac{143}{20} to 15.
Re(i+\frac{3}{5\left(-4\right)}-7-\left(-15\right))
Express \frac{\frac{3}{5}}{-4} as a single fraction.
Re(i+\frac{3}{-20}-7-\left(-15\right))
Multiply 5 and -4 to get -20.
Re(i-\frac{3}{20}-7-\left(-15\right))
Fraction \frac{3}{-20} can be rewritten as -\frac{3}{20} by extracting the negative sign.
Re(-\frac{3}{20}-7+i-\left(-15\right))
Combine the real and imaginary parts in i-\frac{3}{20}-7.
Re(-\frac{143}{20}+i-\left(-15\right))
Add -\frac{3}{20} to -7.
Re(-\frac{143}{20}+i+15)
The opposite of -15 is 15.
Re(-\frac{143}{20}+15+i)
Combine the real and imaginary parts in numbers -\frac{143}{20}+i and 15.
Re(\frac{157}{20}+i)
Add -\frac{143}{20} to 15.
\frac{157}{20}
The real part of \frac{157}{20}+i is \frac{157}{20}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}