Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

i+\frac{1}{34}\left(-\frac{1}{68}\right)+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}}
Subtract \frac{1}{51} from \frac{1}{51} to get 0.
i+\frac{1\left(-1\right)}{34\times 68}+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}}
Multiply \frac{1}{34} times -\frac{1}{68} by multiplying numerator times numerator and denominator times denominator.
i+\frac{-1}{2312}+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}}
Do the multiplications in the fraction \frac{1\left(-1\right)}{34\times 68}.
i-\frac{1}{2312}+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}}
Fraction \frac{-1}{2312} can be rewritten as -\frac{1}{2312} by extracting the negative sign.
i-\frac{1}{2312}+\frac{\frac{3}{66}-\frac{2}{66}}{\frac{1}{33}-\frac{1}{44}}
Least common multiple of 22 and 33 is 66. Convert \frac{1}{22} and \frac{1}{33} to fractions with denominator 66.
i-\frac{1}{2312}+\frac{\frac{3-2}{66}}{\frac{1}{33}-\frac{1}{44}}
Since \frac{3}{66} and \frac{2}{66} have the same denominator, subtract them by subtracting their numerators.
i-\frac{1}{2312}+\frac{\frac{1}{66}}{\frac{1}{33}-\frac{1}{44}}
Subtract 2 from 3 to get 1.
i-\frac{1}{2312}+\frac{\frac{1}{66}}{\frac{4}{132}-\frac{3}{132}}
Least common multiple of 33 and 44 is 132. Convert \frac{1}{33} and \frac{1}{44} to fractions with denominator 132.
i-\frac{1}{2312}+\frac{\frac{1}{66}}{\frac{4-3}{132}}
Since \frac{4}{132} and \frac{3}{132} have the same denominator, subtract them by subtracting their numerators.
i-\frac{1}{2312}+\frac{\frac{1}{66}}{\frac{1}{132}}
Subtract 3 from 4 to get 1.
i-\frac{1}{2312}+\frac{1}{66}\times 132
Divide \frac{1}{66} by \frac{1}{132} by multiplying \frac{1}{66} by the reciprocal of \frac{1}{132}.
i-\frac{1}{2312}+\frac{132}{66}
Multiply \frac{1}{66} and 132 to get \frac{132}{66}.
i-\frac{1}{2312}+2
Divide 132 by 66 to get 2.
-\frac{1}{2312}+2+i
Combine the real and imaginary parts.
\frac{4623}{2312}+i
Add -\frac{1}{2312} to 2.
Re(i+\frac{1}{34}\left(-\frac{1}{68}\right)+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}})
Subtract \frac{1}{51} from \frac{1}{51} to get 0.
Re(i+\frac{1\left(-1\right)}{34\times 68}+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}})
Multiply \frac{1}{34} times -\frac{1}{68} by multiplying numerator times numerator and denominator times denominator.
Re(i+\frac{-1}{2312}+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}})
Do the multiplications in the fraction \frac{1\left(-1\right)}{34\times 68}.
Re(i-\frac{1}{2312}+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}})
Fraction \frac{-1}{2312} can be rewritten as -\frac{1}{2312} by extracting the negative sign.
Re(i-\frac{1}{2312}+\frac{\frac{3}{66}-\frac{2}{66}}{\frac{1}{33}-\frac{1}{44}})
Least common multiple of 22 and 33 is 66. Convert \frac{1}{22} and \frac{1}{33} to fractions with denominator 66.
Re(i-\frac{1}{2312}+\frac{\frac{3-2}{66}}{\frac{1}{33}-\frac{1}{44}})
Since \frac{3}{66} and \frac{2}{66} have the same denominator, subtract them by subtracting their numerators.
Re(i-\frac{1}{2312}+\frac{\frac{1}{66}}{\frac{1}{33}-\frac{1}{44}})
Subtract 2 from 3 to get 1.
Re(i-\frac{1}{2312}+\frac{\frac{1}{66}}{\frac{4}{132}-\frac{3}{132}})
Least common multiple of 33 and 44 is 132. Convert \frac{1}{33} and \frac{1}{44} to fractions with denominator 132.
Re(i-\frac{1}{2312}+\frac{\frac{1}{66}}{\frac{4-3}{132}})
Since \frac{4}{132} and \frac{3}{132} have the same denominator, subtract them by subtracting their numerators.
Re(i-\frac{1}{2312}+\frac{\frac{1}{66}}{\frac{1}{132}})
Subtract 3 from 4 to get 1.
Re(i-\frac{1}{2312}+\frac{1}{66}\times 132)
Divide \frac{1}{66} by \frac{1}{132} by multiplying \frac{1}{66} by the reciprocal of \frac{1}{132}.
Re(i-\frac{1}{2312}+\frac{132}{66})
Multiply \frac{1}{66} and 132 to get \frac{132}{66}.
Re(i-\frac{1}{2312}+2)
Divide 132 by 66 to get 2.
Re(-\frac{1}{2312}+2+i)
Combine the real and imaginary parts in i-\frac{1}{2312}+2.
Re(\frac{4623}{2312}+i)
Add -\frac{1}{2312} to 2.
\frac{4623}{2312}
The real part of \frac{4623}{2312}+i is \frac{4623}{2312}.