i + \frac { 1 } { 34 } ( \frac { 1 } { 51 } - \frac { 1 } { 51 } - \frac { 1 } { 68 } ) + ( \frac { 1 } { 22 } - \frac { 1 } { 33 } ) \div ( \frac { 1 } { 33 } - \frac { 1 } { 44 }
Evaluate
\frac{4623}{2312}+i\approx 1.999567474+i
Real Part
\frac{4623}{2312} = 1\frac{2311}{2312} = 1.9995674740484428
Share
Copied to clipboard
i+\frac{1}{34}\left(-\frac{1}{68}\right)+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}}
Subtract \frac{1}{51} from \frac{1}{51} to get 0.
i+\frac{1\left(-1\right)}{34\times 68}+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}}
Multiply \frac{1}{34} times -\frac{1}{68} by multiplying numerator times numerator and denominator times denominator.
i+\frac{-1}{2312}+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}}
Do the multiplications in the fraction \frac{1\left(-1\right)}{34\times 68}.
i-\frac{1}{2312}+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}}
Fraction \frac{-1}{2312} can be rewritten as -\frac{1}{2312} by extracting the negative sign.
i-\frac{1}{2312}+\frac{\frac{3}{66}-\frac{2}{66}}{\frac{1}{33}-\frac{1}{44}}
Least common multiple of 22 and 33 is 66. Convert \frac{1}{22} and \frac{1}{33} to fractions with denominator 66.
i-\frac{1}{2312}+\frac{\frac{3-2}{66}}{\frac{1}{33}-\frac{1}{44}}
Since \frac{3}{66} and \frac{2}{66} have the same denominator, subtract them by subtracting their numerators.
i-\frac{1}{2312}+\frac{\frac{1}{66}}{\frac{1}{33}-\frac{1}{44}}
Subtract 2 from 3 to get 1.
i-\frac{1}{2312}+\frac{\frac{1}{66}}{\frac{4}{132}-\frac{3}{132}}
Least common multiple of 33 and 44 is 132. Convert \frac{1}{33} and \frac{1}{44} to fractions with denominator 132.
i-\frac{1}{2312}+\frac{\frac{1}{66}}{\frac{4-3}{132}}
Since \frac{4}{132} and \frac{3}{132} have the same denominator, subtract them by subtracting their numerators.
i-\frac{1}{2312}+\frac{\frac{1}{66}}{\frac{1}{132}}
Subtract 3 from 4 to get 1.
i-\frac{1}{2312}+\frac{1}{66}\times 132
Divide \frac{1}{66} by \frac{1}{132} by multiplying \frac{1}{66} by the reciprocal of \frac{1}{132}.
i-\frac{1}{2312}+\frac{132}{66}
Multiply \frac{1}{66} and 132 to get \frac{132}{66}.
i-\frac{1}{2312}+2
Divide 132 by 66 to get 2.
-\frac{1}{2312}+2+i
Combine the real and imaginary parts.
\frac{4623}{2312}+i
Add -\frac{1}{2312} to 2.
Re(i+\frac{1}{34}\left(-\frac{1}{68}\right)+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}})
Subtract \frac{1}{51} from \frac{1}{51} to get 0.
Re(i+\frac{1\left(-1\right)}{34\times 68}+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}})
Multiply \frac{1}{34} times -\frac{1}{68} by multiplying numerator times numerator and denominator times denominator.
Re(i+\frac{-1}{2312}+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}})
Do the multiplications in the fraction \frac{1\left(-1\right)}{34\times 68}.
Re(i-\frac{1}{2312}+\frac{\frac{1}{22}-\frac{1}{33}}{\frac{1}{33}-\frac{1}{44}})
Fraction \frac{-1}{2312} can be rewritten as -\frac{1}{2312} by extracting the negative sign.
Re(i-\frac{1}{2312}+\frac{\frac{3}{66}-\frac{2}{66}}{\frac{1}{33}-\frac{1}{44}})
Least common multiple of 22 and 33 is 66. Convert \frac{1}{22} and \frac{1}{33} to fractions with denominator 66.
Re(i-\frac{1}{2312}+\frac{\frac{3-2}{66}}{\frac{1}{33}-\frac{1}{44}})
Since \frac{3}{66} and \frac{2}{66} have the same denominator, subtract them by subtracting their numerators.
Re(i-\frac{1}{2312}+\frac{\frac{1}{66}}{\frac{1}{33}-\frac{1}{44}})
Subtract 2 from 3 to get 1.
Re(i-\frac{1}{2312}+\frac{\frac{1}{66}}{\frac{4}{132}-\frac{3}{132}})
Least common multiple of 33 and 44 is 132. Convert \frac{1}{33} and \frac{1}{44} to fractions with denominator 132.
Re(i-\frac{1}{2312}+\frac{\frac{1}{66}}{\frac{4-3}{132}})
Since \frac{4}{132} and \frac{3}{132} have the same denominator, subtract them by subtracting their numerators.
Re(i-\frac{1}{2312}+\frac{\frac{1}{66}}{\frac{1}{132}})
Subtract 3 from 4 to get 1.
Re(i-\frac{1}{2312}+\frac{1}{66}\times 132)
Divide \frac{1}{66} by \frac{1}{132} by multiplying \frac{1}{66} by the reciprocal of \frac{1}{132}.
Re(i-\frac{1}{2312}+\frac{132}{66})
Multiply \frac{1}{66} and 132 to get \frac{132}{66}.
Re(i-\frac{1}{2312}+2)
Divide 132 by 66 to get 2.
Re(-\frac{1}{2312}+2+i)
Combine the real and imaginary parts in i-\frac{1}{2312}+2.
Re(\frac{4623}{2312}+i)
Add -\frac{1}{2312} to 2.
\frac{4623}{2312}
The real part of \frac{4623}{2312}+i is \frac{4623}{2312}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}