Solve for L
\left\{\begin{matrix}L=\frac{2b+2h_{z}+\delta }{2h_{z}}\text{, }&b\neq -\frac{\delta }{2}\text{ and }h_{z}\neq 0\\L\neq 1\text{, }&h_{z}=0\text{ and }b=-\frac{\delta }{2}\end{matrix}\right.
Solve for b
b=Lh_{z}-\frac{\delta }{2}-h_{z}
L\neq 1
Share
Copied to clipboard
h_{z}\left(L-1\right)=b+\frac{\delta }{2}
Variable L cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by L-1.
h_{z}L-h_{z}=b+\frac{\delta }{2}
Use the distributive property to multiply h_{z} by L-1.
h_{z}L=b+\frac{\delta }{2}+h_{z}
Add h_{z} to both sides.
2h_{z}L=2b+\delta +2h_{z}
Multiply both sides of the equation by 2.
2h_{z}L=2b+2h_{z}+\delta
The equation is in standard form.
\frac{2h_{z}L}{2h_{z}}=\frac{2b+2h_{z}+\delta }{2h_{z}}
Divide both sides by 2h_{z}.
L=\frac{2b+2h_{z}+\delta }{2h_{z}}
Dividing by 2h_{z} undoes the multiplication by 2h_{z}.
L=\frac{\frac{\delta }{2}+b}{h_{z}}+1
Divide 2b+\delta +2h_{z} by 2h_{z}.
L=\frac{\frac{\delta }{2}+b}{h_{z}}+1\text{, }L\neq 1
Variable L cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}