Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(-x^{2}+16x\right)
Factor out 5.
x\left(-x+16\right)
Consider -x^{2}+16x. Factor out x.
5x\left(-x+16\right)
Rewrite the complete factored expression.
-5x^{2}+80x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-80±\sqrt{80^{2}}}{2\left(-5\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-80±80}{2\left(-5\right)}
Take the square root of 80^{2}.
x=\frac{-80±80}{-10}
Multiply 2 times -5.
x=\frac{0}{-10}
Now solve the equation x=\frac{-80±80}{-10} when ± is plus. Add -80 to 80.
x=0
Divide 0 by -10.
x=-\frac{160}{-10}
Now solve the equation x=\frac{-80±80}{-10} when ± is minus. Subtract 80 from -80.
x=16
Divide -160 by -10.
-5x^{2}+80x=-5x\left(x-16\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 16 for x_{2}.