Evaluate
9u^{3}+u^{2}-\frac{9}{8}-\frac{1}{8u}
Expand
9u^{3}+u^{2}-\frac{9}{8}-\frac{1}{8u}
Share
Copied to clipboard
\left(\frac{9u}{u}+\frac{1}{u}\right)\left(u^{3}-\frac{1}{8}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 9 times \frac{u}{u}.
\frac{9u+1}{u}\left(u^{3}-\frac{1}{8}\right)
Since \frac{9u}{u} and \frac{1}{u} have the same denominator, add them by adding their numerators.
\frac{9u+1}{u}u^{3}-\frac{1}{8}\times \frac{9u+1}{u}
Use the distributive property to multiply \frac{9u+1}{u} by u^{3}-\frac{1}{8}.
\frac{\left(9u+1\right)u^{3}}{u}-\frac{1}{8}\times \frac{9u+1}{u}
Express \frac{9u+1}{u}u^{3} as a single fraction.
\left(9u+1\right)u^{2}-\frac{1}{8}\times \frac{9u+1}{u}
Cancel out u in both numerator and denominator.
9u^{3}+u^{2}-\frac{1}{8}\times \frac{9u+1}{u}
Use the distributive property to multiply 9u+1 by u^{2}.
9u^{3}+u^{2}+\frac{-\left(9u+1\right)}{8u}
Multiply -\frac{1}{8} times \frac{9u+1}{u} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(9u^{3}+u^{2}\right)\times 8u}{8u}+\frac{-\left(9u+1\right)}{8u}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9u^{3}+u^{2} times \frac{8u}{8u}.
\frac{\left(9u^{3}+u^{2}\right)\times 8u-\left(9u+1\right)}{8u}
Since \frac{\left(9u^{3}+u^{2}\right)\times 8u}{8u} and \frac{-\left(9u+1\right)}{8u} have the same denominator, add them by adding their numerators.
\frac{72u^{4}+8u^{3}-9u-1}{8u}
Do the multiplications in \left(9u^{3}+u^{2}\right)\times 8u-\left(9u+1\right).
\left(\frac{9u}{u}+\frac{1}{u}\right)\left(u^{3}-\frac{1}{8}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 9 times \frac{u}{u}.
\frac{9u+1}{u}\left(u^{3}-\frac{1}{8}\right)
Since \frac{9u}{u} and \frac{1}{u} have the same denominator, add them by adding their numerators.
\frac{9u+1}{u}u^{3}-\frac{1}{8}\times \frac{9u+1}{u}
Use the distributive property to multiply \frac{9u+1}{u} by u^{3}-\frac{1}{8}.
\frac{\left(9u+1\right)u^{3}}{u}-\frac{1}{8}\times \frac{9u+1}{u}
Express \frac{9u+1}{u}u^{3} as a single fraction.
\left(9u+1\right)u^{2}-\frac{1}{8}\times \frac{9u+1}{u}
Cancel out u in both numerator and denominator.
9u^{3}+u^{2}-\frac{1}{8}\times \frac{9u+1}{u}
Use the distributive property to multiply 9u+1 by u^{2}.
9u^{3}+u^{2}+\frac{-\left(9u+1\right)}{8u}
Multiply -\frac{1}{8} times \frac{9u+1}{u} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(9u^{3}+u^{2}\right)\times 8u}{8u}+\frac{-\left(9u+1\right)}{8u}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9u^{3}+u^{2} times \frac{8u}{8u}.
\frac{\left(9u^{3}+u^{2}\right)\times 8u-\left(9u+1\right)}{8u}
Since \frac{\left(9u^{3}+u^{2}\right)\times 8u}{8u} and \frac{-\left(9u+1\right)}{8u} have the same denominator, add them by adding their numerators.
\frac{72u^{4}+8u^{3}-9u-1}{8u}
Do the multiplications in \left(9u^{3}+u^{2}\right)\times 8u-\left(9u+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}