Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

16\left(3t-t^{2}\right)
Factor out 16.
t\left(3-t\right)
Consider 3t-t^{2}. Factor out t.
16t\left(-t+3\right)
Rewrite the complete factored expression.
-16t^{2}+48t=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-48±\sqrt{48^{2}}}{2\left(-16\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-48±48}{2\left(-16\right)}
Take the square root of 48^{2}.
t=\frac{-48±48}{-32}
Multiply 2 times -16.
t=\frac{0}{-32}
Now solve the equation t=\frac{-48±48}{-32} when ± is plus. Add -48 to 48.
t=0
Divide 0 by -32.
t=-\frac{96}{-32}
Now solve the equation t=\frac{-48±48}{-32} when ± is minus. Subtract 48 from -48.
t=3
Divide -96 by -32.
-16t^{2}+48t=-16t\left(t-3\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 3 for x_{2}.