Factor
-3\left(t-\left(-\frac{7\sqrt{3}}{3}+4\right)\right)\left(t-\left(\frac{7\sqrt{3}}{3}+4\right)\right)
Evaluate
1+24t-3t^{2}
Share
Copied to clipboard
-3t^{2}+24t+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-24±\sqrt{24^{2}-4\left(-3\right)}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-24±\sqrt{576-4\left(-3\right)}}{2\left(-3\right)}
Square 24.
t=\frac{-24±\sqrt{576+12}}{2\left(-3\right)}
Multiply -4 times -3.
t=\frac{-24±\sqrt{588}}{2\left(-3\right)}
Add 576 to 12.
t=\frac{-24±14\sqrt{3}}{2\left(-3\right)}
Take the square root of 588.
t=\frac{-24±14\sqrt{3}}{-6}
Multiply 2 times -3.
t=\frac{14\sqrt{3}-24}{-6}
Now solve the equation t=\frac{-24±14\sqrt{3}}{-6} when ± is plus. Add -24 to 14\sqrt{3}.
t=-\frac{7\sqrt{3}}{3}+4
Divide -24+14\sqrt{3} by -6.
t=\frac{-14\sqrt{3}-24}{-6}
Now solve the equation t=\frac{-24±14\sqrt{3}}{-6} when ± is minus. Subtract 14\sqrt{3} from -24.
t=\frac{7\sqrt{3}}{3}+4
Divide -24-14\sqrt{3} by -6.
-3t^{2}+24t+1=-3\left(t-\left(-\frac{7\sqrt{3}}{3}+4\right)\right)\left(t-\left(\frac{7\sqrt{3}}{3}+4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 4-\frac{7\sqrt{3}}{3} for x_{1} and 4+\frac{7\sqrt{3}}{3} for x_{2}.
x ^ 2 -8x -\frac{1}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 8 rs = -\frac{1}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 4 - u s = 4 + u
Two numbers r and s sum up to 8 exactly when the average of the two numbers is \frac{1}{2}*8 = 4. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(4 - u) (4 + u) = -\frac{1}{3}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{1}{3}
16 - u^2 = -\frac{1}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{1}{3}-16 = -\frac{49}{3}
Simplify the expression by subtracting 16 on both sides
u^2 = \frac{49}{3} u = \pm\sqrt{\frac{49}{3}} = \pm \frac{7}{\sqrt{3}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =4 - \frac{7}{\sqrt{3}} = -0.041 s = 4 + \frac{7}{\sqrt{3}} = 8.041
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}