Factor
-16\left(t-16\right)\left(t+6\right)
Evaluate
-16\left(t-16\right)\left(t+6\right)
Share
Copied to clipboard
16\left(-t^{2}+10t+96\right)
Factor out 16.
a+b=10 ab=-96=-96
Consider -t^{2}+10t+96. Factor the expression by grouping. First, the expression needs to be rewritten as -t^{2}+at+bt+96. To find a and b, set up a system to be solved.
-1,96 -2,48 -3,32 -4,24 -6,16 -8,12
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -96.
-1+96=95 -2+48=46 -3+32=29 -4+24=20 -6+16=10 -8+12=4
Calculate the sum for each pair.
a=16 b=-6
The solution is the pair that gives sum 10.
\left(-t^{2}+16t\right)+\left(-6t+96\right)
Rewrite -t^{2}+10t+96 as \left(-t^{2}+16t\right)+\left(-6t+96\right).
-t\left(t-16\right)-6\left(t-16\right)
Factor out -t in the first and -6 in the second group.
\left(t-16\right)\left(-t-6\right)
Factor out common term t-16 by using distributive property.
16\left(t-16\right)\left(-t-6\right)
Rewrite the complete factored expression.
-16t^{2}+160t+1536=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-160±\sqrt{160^{2}-4\left(-16\right)\times 1536}}{2\left(-16\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-160±\sqrt{25600-4\left(-16\right)\times 1536}}{2\left(-16\right)}
Square 160.
t=\frac{-160±\sqrt{25600+64\times 1536}}{2\left(-16\right)}
Multiply -4 times -16.
t=\frac{-160±\sqrt{25600+98304}}{2\left(-16\right)}
Multiply 64 times 1536.
t=\frac{-160±\sqrt{123904}}{2\left(-16\right)}
Add 25600 to 98304.
t=\frac{-160±352}{2\left(-16\right)}
Take the square root of 123904.
t=\frac{-160±352}{-32}
Multiply 2 times -16.
t=\frac{192}{-32}
Now solve the equation t=\frac{-160±352}{-32} when ± is plus. Add -160 to 352.
t=-6
Divide 192 by -32.
t=-\frac{512}{-32}
Now solve the equation t=\frac{-160±352}{-32} when ± is minus. Subtract 352 from -160.
t=16
Divide -512 by -32.
-16t^{2}+160t+1536=-16\left(t-\left(-6\right)\right)\left(t-16\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -6 for x_{1} and 16 for x_{2}.
-16t^{2}+160t+1536=-16\left(t+6\right)\left(t-16\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
x ^ 2 -10x -96 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 10 rs = -96
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 5 - u s = 5 + u
Two numbers r and s sum up to 10 exactly when the average of the two numbers is \frac{1}{2}*10 = 5. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(5 - u) (5 + u) = -96
To solve for unknown quantity u, substitute these in the product equation rs = -96
25 - u^2 = -96
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -96-25 = -121
Simplify the expression by subtracting 25 on both sides
u^2 = 121 u = \pm\sqrt{121} = \pm 11
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =5 - 11 = -6 s = 5 + 11 = 16
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}