Solve for a
a=\frac{\left(\sqrt{5}h^{2}-5\sqrt{a_{0}}\right)^{2}}{25}
a_{0}\geq 0\text{ and }\frac{\sqrt{5}h^{2}}{5}-\sqrt{a_{0}}\geq 0
Solve for a_0
a_{0}=\frac{\left(\sqrt{5}h^{2}-5\sqrt{a}\right)^{2}}{25}
a\geq 0\text{ and }\frac{\sqrt{5}h^{2}}{5}-\sqrt{a}\geq 0
Share
Copied to clipboard
\sqrt{5a_{0}}+\sqrt{5a}=h^{2}
Swap sides so that all variable terms are on the left hand side.
\sqrt{5a}=h^{2}-\sqrt{5a_{0}}
Subtract \sqrt{5a_{0}} from both sides.
5a=\left(h^{2}-\sqrt{5a_{0}}\right)^{2}
Square both sides of the equation.
\frac{5a}{5}=\frac{\left(h^{2}-\sqrt{5a_{0}}\right)^{2}}{5}
Divide both sides by 5.
a=\frac{\left(h^{2}-\sqrt{5a_{0}}\right)^{2}}{5}
Dividing by 5 undoes the multiplication by 5.
\sqrt{5a_{0}}+\sqrt{5a}=h^{2}
Swap sides so that all variable terms are on the left hand side.
\sqrt{5a_{0}}=h^{2}-\sqrt{5a}
Subtract \sqrt{5a} from both sides.
5a_{0}=\left(h^{2}-\sqrt{5a}\right)^{2}
Square both sides of the equation.
\frac{5a_{0}}{5}=\frac{\left(h^{2}-\sqrt{5a}\right)^{2}}{5}
Divide both sides by 5.
a_{0}=\frac{\left(h^{2}-\sqrt{5a}\right)^{2}}{5}
Dividing by 5 undoes the multiplication by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}