Solve for h (complex solution)
h=\frac{5}{x^{2}+1}
x\neq i\text{ and }x\neq -i
Solve for h
h=\frac{5}{x^{2}+1}
Solve for x (complex solution)
x=-\sqrt{-1+\frac{5}{h}}
x=\sqrt{-1+\frac{5}{h}}\text{, }h\neq 0
Solve for x
x=\sqrt{-1+\frac{5}{h}}
x=-\sqrt{-1+\frac{5}{h}}\text{, }h>0\text{ and }h\leq 5
Graph
Share
Copied to clipboard
5\times \frac{1}{h}=x^{2}+1
Reorder the terms.
5\times 1=hx^{2}+h
Variable h cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by h.
5=hx^{2}+h
Multiply 5 and 1 to get 5.
hx^{2}+h=5
Swap sides so that all variable terms are on the left hand side.
\left(x^{2}+1\right)h=5
Combine all terms containing h.
\frac{\left(x^{2}+1\right)h}{x^{2}+1}=\frac{5}{x^{2}+1}
Divide both sides by x^{2}+1.
h=\frac{5}{x^{2}+1}
Dividing by x^{2}+1 undoes the multiplication by x^{2}+1.
h=\frac{5}{x^{2}+1}\text{, }h\neq 0
Variable h cannot be equal to 0.
5\times \frac{1}{h}=x^{2}+1
Reorder the terms.
5\times 1=hx^{2}+h
Variable h cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by h.
5=hx^{2}+h
Multiply 5 and 1 to get 5.
hx^{2}+h=5
Swap sides so that all variable terms are on the left hand side.
\left(x^{2}+1\right)h=5
Combine all terms containing h.
\frac{\left(x^{2}+1\right)h}{x^{2}+1}=\frac{5}{x^{2}+1}
Divide both sides by x^{2}+1.
h=\frac{5}{x^{2}+1}
Dividing by x^{2}+1 undoes the multiplication by x^{2}+1.
h=\frac{5}{x^{2}+1}\text{, }h\neq 0
Variable h cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}