Solve for g
\left\{\begin{matrix}g=\frac{v_{t}^{2}}{2\left(v_{0}^{2}+h\right)}\text{, }&v_{t}\neq 0\text{ and }h\neq -v_{0}^{2}\\g\neq 0\text{, }&v_{t}=0\text{ and }h=-v_{0}^{2}\end{matrix}\right.
Solve for h
h=-v_{0}^{2}+\frac{v_{t}^{2}}{2g}
g\neq 0
Share
Copied to clipboard
h\times 2g=v_{t}^{2}-v_{0}^{2}\times 2g
Variable g cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2g.
h\times 2g+v_{0}^{2}\times 2g=v_{t}^{2}
Add v_{0}^{2}\times 2g to both sides.
\left(h\times 2+v_{0}^{2}\times 2\right)g=v_{t}^{2}
Combine all terms containing g.
\left(2v_{0}^{2}+2h\right)g=v_{t}^{2}
The equation is in standard form.
\frac{\left(2v_{0}^{2}+2h\right)g}{2v_{0}^{2}+2h}=\frac{v_{t}^{2}}{2v_{0}^{2}+2h}
Divide both sides by 2v_{0}^{2}+2h.
g=\frac{v_{t}^{2}}{2v_{0}^{2}+2h}
Dividing by 2v_{0}^{2}+2h undoes the multiplication by 2v_{0}^{2}+2h.
g=\frac{v_{t}^{2}}{2\left(v_{0}^{2}+h\right)}
Divide v_{t}^{2} by 2v_{0}^{2}+2h.
g=\frac{v_{t}^{2}}{2\left(v_{0}^{2}+h\right)}\text{, }g\neq 0
Variable g cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}