Solve for k
k=-\frac{11-h}{10-h}
h\neq 10
Solve for h
h=\frac{10k+11}{k+1}
k\neq -1
Share
Copied to clipboard
h\left(k+1\right)=4+3k+\left(k+1\right)\times 7
Variable k cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by k+1.
hk+h=4+3k+\left(k+1\right)\times 7
Use the distributive property to multiply h by k+1.
hk+h=4+3k+7k+7
Use the distributive property to multiply k+1 by 7.
hk+h=4+10k+7
Combine 3k and 7k to get 10k.
hk+h=11+10k
Add 4 and 7 to get 11.
hk+h-10k=11
Subtract 10k from both sides.
hk-10k=11-h
Subtract h from both sides.
\left(h-10\right)k=11-h
Combine all terms containing k.
\frac{\left(h-10\right)k}{h-10}=\frac{11-h}{h-10}
Divide both sides by h-10.
k=\frac{11-h}{h-10}
Dividing by h-10 undoes the multiplication by h-10.
k=\frac{11-h}{h-10}\text{, }k\neq -1
Variable k cannot be equal to -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}