Solve for V
\left\{\begin{matrix}V=-\frac{gt}{2}+\frac{h}{t}\text{, }&t\neq 0\\V\in \mathrm{R}\text{, }&h=0\text{ and }t=0\end{matrix}\right.
Solve for g
\left\{\begin{matrix}g=-\frac{2\left(Vt-h\right)}{t^{2}}\text{, }&t\neq 0\\g\in \mathrm{R}\text{, }&h=0\text{ and }t=0\end{matrix}\right.
Share
Copied to clipboard
\frac{1}{2}gt^{2}+Vt=h
Swap sides so that all variable terms are on the left hand side.
Vt=h-\frac{1}{2}gt^{2}
Subtract \frac{1}{2}gt^{2} from both sides.
tV=-\frac{gt^{2}}{2}+h
The equation is in standard form.
\frac{tV}{t}=\frac{-\frac{gt^{2}}{2}+h}{t}
Divide both sides by t.
V=\frac{-\frac{gt^{2}}{2}+h}{t}
Dividing by t undoes the multiplication by t.
V=-\frac{gt}{2}+\frac{h}{t}
Divide h-\frac{gt^{2}}{2} by t.
\frac{1}{2}gt^{2}+Vt=h
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}gt^{2}=h-Vt
Subtract Vt from both sides.
\frac{t^{2}}{2}g=h-Vt
The equation is in standard form.
\frac{2\times \frac{t^{2}}{2}g}{t^{2}}=\frac{2\left(h-Vt\right)}{t^{2}}
Divide both sides by \frac{1}{2}t^{2}.
g=\frac{2\left(h-Vt\right)}{t^{2}}
Dividing by \frac{1}{2}t^{2} undoes the multiplication by \frac{1}{2}t^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}