Solve for m
m=\frac{125hs}{1568}
s\neq 0
Solve for h
h=\frac{1568m}{125s}
s\neq 0
Share
Copied to clipboard
hs^{2}=\frac{1}{2}\times 9.8m\times 2.56s
Multiply both sides of the equation by s^{2}.
hs^{2}=\frac{49}{10}m\times 2.56s
Multiply \frac{1}{2} and 9.8 to get \frac{49}{10}.
hs^{2}=\frac{1568}{125}ms
Multiply \frac{49}{10} and 2.56 to get \frac{1568}{125}.
\frac{1568}{125}ms=hs^{2}
Swap sides so that all variable terms are on the left hand side.
\frac{1568s}{125}m=hs^{2}
The equation is in standard form.
\frac{125\times \frac{1568s}{125}m}{1568s}=\frac{125hs^{2}}{1568s}
Divide both sides by \frac{1568}{125}s.
m=\frac{125hs^{2}}{1568s}
Dividing by \frac{1568}{125}s undoes the multiplication by \frac{1568}{125}s.
m=\frac{125hs}{1568}
Divide hs^{2} by \frac{1568}{125}s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}