g _ { 2 } ( x ) = \frac { 0,2 } { 1 + x ^ { 4 } }
Solve for g_2
g_{2}=\frac{1}{5\left(x^{5}+x\right)}
x\neq 0
Graph
Share
Copied to clipboard
g_{2}x\left(x^{4}+1\right)=0,2
Multiply both sides of the equation by x^{4}+1.
g_{2}x^{5}+g_{2}x=0,2
Use the distributive property to multiply g_{2}x by x^{4}+1.
\left(x^{5}+x\right)g_{2}=0,2
Combine all terms containing g_{2}.
\frac{\left(x^{5}+x\right)g_{2}}{x^{5}+x}=\frac{0,2}{x^{5}+x}
Divide both sides by x^{5}+x.
g_{2}=\frac{0,2}{x^{5}+x}
Dividing by x^{5}+x undoes the multiplication by x^{5}+x.
g_{2}=\frac{1}{5x\left(x^{4}+1\right)}
Divide 0,2 by x^{5}+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}