Solve for g_1
g_{1}=\frac{y\left(x-4\right)}{2}
y\neq 0
Solve for x
x=\frac{2g_{1}}{y}+4
y\neq 0
Graph
Share
Copied to clipboard
2g_{1}=\frac{1}{2}x\times 2y+2y\left(-2\right)
Multiply both sides of the equation by 2y, the least common multiple of y,2.
2g_{1}=xy+2y\left(-2\right)
Multiply \frac{1}{2} and 2 to get 1.
2g_{1}=xy-4y
Multiply 2 and -2 to get -4.
\frac{2g_{1}}{2}=\frac{y\left(x-4\right)}{2}
Divide both sides by 2.
g_{1}=\frac{y\left(x-4\right)}{2}
Dividing by 2 undoes the multiplication by 2.
2g_{1}=\frac{1}{2}x\times 2y+2y\left(-2\right)
Multiply both sides of the equation by 2y, the least common multiple of y,2.
2g_{1}=xy+2y\left(-2\right)
Multiply \frac{1}{2} and 2 to get 1.
2g_{1}=xy-4y
Multiply 2 and -2 to get -4.
xy-4y=2g_{1}
Swap sides so that all variable terms are on the left hand side.
xy=2g_{1}+4y
Add 4y to both sides.
yx=4y+2g_{1}
The equation is in standard form.
\frac{yx}{y}=\frac{4y+2g_{1}}{y}
Divide both sides by y.
x=\frac{4y+2g_{1}}{y}
Dividing by y undoes the multiplication by y.
x=\frac{2g_{1}}{y}+4
Divide 2g_{1}+4y by y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}