Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(z^{3}+4z\right)\left(z^{2}+2z-24\right)}{\left(z^{2}-16\right)\left(z^{2}+3z-18\right)}
Divide \frac{z^{3}+4z}{z^{2}-16} by \frac{z^{2}+3z-18}{z^{2}+2z-24} by multiplying \frac{z^{3}+4z}{z^{2}-16} by the reciprocal of \frac{z^{2}+3z-18}{z^{2}+2z-24}.
\frac{z\left(z-4\right)\left(z+6\right)\left(z^{2}+4\right)}{\left(z-4\right)\left(z-3\right)\left(z+4\right)\left(z+6\right)}
Factor the expressions that are not already factored.
\frac{z\left(z^{2}+4\right)}{\left(z-3\right)\left(z+4\right)}
Cancel out \left(z-4\right)\left(z+6\right) in both numerator and denominator.
\frac{z^{3}+4z}{z^{2}+z-12}
Expand the expression.
\frac{\left(z^{3}+4z\right)\left(z^{2}+2z-24\right)}{\left(z^{2}-16\right)\left(z^{2}+3z-18\right)}
Divide \frac{z^{3}+4z}{z^{2}-16} by \frac{z^{2}+3z-18}{z^{2}+2z-24} by multiplying \frac{z^{3}+4z}{z^{2}-16} by the reciprocal of \frac{z^{2}+3z-18}{z^{2}+2z-24}.
\frac{z\left(z-4\right)\left(z+6\right)\left(z^{2}+4\right)}{\left(z-4\right)\left(z-3\right)\left(z+4\right)\left(z+6\right)}
Factor the expressions that are not already factored.
\frac{z\left(z^{2}+4\right)}{\left(z-3\right)\left(z+4\right)}
Cancel out \left(z-4\right)\left(z+6\right) in both numerator and denominator.
\frac{z^{3}+4z}{z^{2}+z-12}
Expand the expression.