Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{4}-x^{3}-31x^{2}+x+30=0
To factor the expression, solve the equation where it equals to 0.
±30,±15,±10,±6,±5,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 30 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{3}-31x-30=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{4}-x^{3}-31x^{2}+x+30 by x-1 to get x^{3}-31x-30. To factor the result, solve the equation where it equals to 0.
±30,±15,±10,±6,±5,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -30 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}-x-30=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-31x-30 by x+1 to get x^{2}-x-30. To factor the result, solve the equation where it equals to 0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\left(-30\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -1 for b, and -30 for c in the quadratic formula.
x=\frac{1±11}{2}
Do the calculations.
x=-5 x=6
Solve the equation x^{2}-x-30=0 when ± is plus and when ± is minus.
\left(x-6\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)
Rewrite the factored expression using the obtained roots.