Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x^{2}-x\right)
Factor out 3.
x\left(x-1\right)
Consider x^{2}-x. Factor out x.
3x\left(x-1\right)
Rewrite the complete factored expression.
3x^{2}-3x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±3}{2\times 3}
Take the square root of \left(-3\right)^{2}.
x=\frac{3±3}{2\times 3}
The opposite of -3 is 3.
x=\frac{3±3}{6}
Multiply 2 times 3.
x=\frac{6}{6}
Now solve the equation x=\frac{3±3}{6} when ± is plus. Add 3 to 3.
x=1
Divide 6 by 6.
x=\frac{0}{6}
Now solve the equation x=\frac{3±3}{6} when ± is minus. Subtract 3 from 3.
x=0
Divide 0 by 6.
3x^{2}-3x=3\left(x-1\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1 for x_{1} and 0 for x_{2}.