Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+6x+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\left(-1\right)}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{36-4\left(-1\right)}}{2\left(-1\right)}
Square 6.
x=\frac{-6±\sqrt{36+4}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-6±\sqrt{40}}{2\left(-1\right)}
Add 36 to 4.
x=\frac{-6±2\sqrt{10}}{2\left(-1\right)}
Take the square root of 40.
x=\frac{-6±2\sqrt{10}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{10}-6}{-2}
Now solve the equation x=\frac{-6±2\sqrt{10}}{-2} when ± is plus. Add -6 to 2\sqrt{10}.
x=3-\sqrt{10}
Divide -6+2\sqrt{10} by -2.
x=\frac{-2\sqrt{10}-6}{-2}
Now solve the equation x=\frac{-6±2\sqrt{10}}{-2} when ± is minus. Subtract 2\sqrt{10} from -6.
x=\sqrt{10}+3
Divide -6-2\sqrt{10} by -2.
-x^{2}+6x+1=-\left(x-\left(3-\sqrt{10}\right)\right)\left(x-\left(\sqrt{10}+3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3-\sqrt{10} for x_{1} and 3+\sqrt{10} for x_{2}.