Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(-x^{2}+2x-4\right)
Factor out 2. Polynomial -x^{2}+2x-4 is not factored since it does not have any rational roots.
-2x^{2}+4x-8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\left(-8\right)}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{16-4\left(-2\right)\left(-8\right)}}{2\left(-2\right)}
Square 4.
x=\frac{-4±\sqrt{16+8\left(-8\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-4±\sqrt{16-64}}{2\left(-2\right)}
Multiply 8 times -8.
x=\frac{-4±\sqrt{-48}}{2\left(-2\right)}
Add 16 to -64.
-2x^{2}+4x-8
Since the square root of a negative number is not defined in the real field, there are no solutions. Quadratic polynomial cannot be factored.
x ^ 2 -2x +4 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 2 rs = 4
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 1 - u s = 1 + u
Two numbers r and s sum up to 2 exactly when the average of the two numbers is \frac{1}{2}*2 = 1. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath-gzdabgg4ehffg0hf.b01.azurefd.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(1 - u) (1 + u) = 4
To solve for unknown quantity u, substitute these in the product equation rs = 4
1 - u^2 = 4
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 4-1 = 3
Simplify the expression by subtracting 1 on both sides
u^2 = -3 u = \pm\sqrt{-3} = \pm \sqrt{3}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =1 - \sqrt{3}i s = 1 + \sqrt{3}i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.