Evaluate
-\frac{\left(x+2\right)\left(x+8\right)}{3}
Expand
\frac{-x^{2}-10x-16}{3}
Graph
Share
Copied to clipboard
\left(-\frac{1}{3}x-\frac{1}{3}\times 2\right)\left(x+8\right)
Use the distributive property to multiply -\frac{1}{3} by x+2.
\left(-\frac{1}{3}x+\frac{-2}{3}\right)\left(x+8\right)
Express -\frac{1}{3}\times 2 as a single fraction.
\left(-\frac{1}{3}x-\frac{2}{3}\right)\left(x+8\right)
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
-\frac{1}{3}xx-\frac{1}{3}x\times 8-\frac{2}{3}x-\frac{2}{3}\times 8
Apply the distributive property by multiplying each term of -\frac{1}{3}x-\frac{2}{3} by each term of x+8.
-\frac{1}{3}x^{2}-\frac{1}{3}x\times 8-\frac{2}{3}x-\frac{2}{3}\times 8
Multiply x and x to get x^{2}.
-\frac{1}{3}x^{2}+\frac{-8}{3}x-\frac{2}{3}x-\frac{2}{3}\times 8
Express -\frac{1}{3}\times 8 as a single fraction.
-\frac{1}{3}x^{2}-\frac{8}{3}x-\frac{2}{3}x-\frac{2}{3}\times 8
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
-\frac{1}{3}x^{2}-\frac{10}{3}x-\frac{2}{3}\times 8
Combine -\frac{8}{3}x and -\frac{2}{3}x to get -\frac{10}{3}x.
-\frac{1}{3}x^{2}-\frac{10}{3}x+\frac{-2\times 8}{3}
Express -\frac{2}{3}\times 8 as a single fraction.
-\frac{1}{3}x^{2}-\frac{10}{3}x+\frac{-16}{3}
Multiply -2 and 8 to get -16.
-\frac{1}{3}x^{2}-\frac{10}{3}x-\frac{16}{3}
Fraction \frac{-16}{3} can be rewritten as -\frac{16}{3} by extracting the negative sign.
\left(-\frac{1}{3}x-\frac{1}{3}\times 2\right)\left(x+8\right)
Use the distributive property to multiply -\frac{1}{3} by x+2.
\left(-\frac{1}{3}x+\frac{-2}{3}\right)\left(x+8\right)
Express -\frac{1}{3}\times 2 as a single fraction.
\left(-\frac{1}{3}x-\frac{2}{3}\right)\left(x+8\right)
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
-\frac{1}{3}xx-\frac{1}{3}x\times 8-\frac{2}{3}x-\frac{2}{3}\times 8
Apply the distributive property by multiplying each term of -\frac{1}{3}x-\frac{2}{3} by each term of x+8.
-\frac{1}{3}x^{2}-\frac{1}{3}x\times 8-\frac{2}{3}x-\frac{2}{3}\times 8
Multiply x and x to get x^{2}.
-\frac{1}{3}x^{2}+\frac{-8}{3}x-\frac{2}{3}x-\frac{2}{3}\times 8
Express -\frac{1}{3}\times 8 as a single fraction.
-\frac{1}{3}x^{2}-\frac{8}{3}x-\frac{2}{3}x-\frac{2}{3}\times 8
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
-\frac{1}{3}x^{2}-\frac{10}{3}x-\frac{2}{3}\times 8
Combine -\frac{8}{3}x and -\frac{2}{3}x to get -\frac{10}{3}x.
-\frac{1}{3}x^{2}-\frac{10}{3}x+\frac{-2\times 8}{3}
Express -\frac{2}{3}\times 8 as a single fraction.
-\frac{1}{3}x^{2}-\frac{10}{3}x+\frac{-16}{3}
Multiply -2 and 8 to get -16.
-\frac{1}{3}x^{2}-\frac{10}{3}x-\frac{16}{3}
Fraction \frac{-16}{3} can be rewritten as -\frac{16}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}