Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x^{3}+2x\right)\left(x^{2}+6x-16\right)}{\left(x^{2}-4\right)\left(x^{2}+3x-40\right)}
Divide \frac{x^{3}+2x}{x^{2}-4} by \frac{x^{2}+3x-40}{x^{2}+6x-16} by multiplying \frac{x^{3}+2x}{x^{2}-4} by the reciprocal of \frac{x^{2}+3x-40}{x^{2}+6x-16}.
\frac{x\left(x-2\right)\left(x+8\right)\left(x^{2}+2\right)}{\left(x-5\right)\left(x-2\right)\left(x+2\right)\left(x+8\right)}
Factor the expressions that are not already factored.
\frac{x\left(x^{2}+2\right)}{\left(x-5\right)\left(x+2\right)}
Cancel out \left(x-2\right)\left(x+8\right) in both numerator and denominator.
\frac{x^{3}+2x}{x^{2}-3x-10}
Expand the expression.
\frac{\left(x^{3}+2x\right)\left(x^{2}+6x-16\right)}{\left(x^{2}-4\right)\left(x^{2}+3x-40\right)}
Divide \frac{x^{3}+2x}{x^{2}-4} by \frac{x^{2}+3x-40}{x^{2}+6x-16} by multiplying \frac{x^{3}+2x}{x^{2}-4} by the reciprocal of \frac{x^{2}+3x-40}{x^{2}+6x-16}.
\frac{x\left(x-2\right)\left(x+8\right)\left(x^{2}+2\right)}{\left(x-5\right)\left(x-2\right)\left(x+2\right)\left(x+8\right)}
Factor the expressions that are not already factored.
\frac{x\left(x^{2}+2\right)}{\left(x-5\right)\left(x+2\right)}
Cancel out \left(x-2\right)\left(x+8\right) in both numerator and denominator.
\frac{x^{3}+2x}{x^{2}-3x-10}
Expand the expression.