Solve for f (complex solution)
f\neq 0
x=12-6\sqrt{6}\text{ or }x=6\sqrt{6}+12
Solve for f
f\neq 0
x=6\sqrt{6}+12\text{ or }x=12-6\sqrt{6}
Solve for x
x=6\sqrt{6}+12
x=12-6\sqrt{6}\text{, }f\neq 0
Graph
Share
Copied to clipboard
\frac{1}{6}fxx=4xf+f\times 12
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f.
\frac{1}{6}fx^{2}=4xf+f\times 12
Multiply x and x to get x^{2}.
\frac{1}{6}fx^{2}-4xf=f\times 12
Subtract 4xf from both sides.
\frac{1}{6}fx^{2}-4xf-f\times 12=0
Subtract f\times 12 from both sides.
\frac{1}{6}fx^{2}-4xf-12f=0
Multiply -1 and 12 to get -12.
\left(\frac{1}{6}x^{2}-4x-12\right)f=0
Combine all terms containing f.
\left(\frac{x^{2}}{6}-4x-12\right)f=0
The equation is in standard form.
f=0
Divide 0 by \frac{1}{6}x^{2}-4x-12.
f\in \emptyset
Variable f cannot be equal to 0.
\frac{1}{6}fxx=4xf+f\times 12
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f.
\frac{1}{6}fx^{2}=4xf+f\times 12
Multiply x and x to get x^{2}.
\frac{1}{6}fx^{2}-4xf=f\times 12
Subtract 4xf from both sides.
\frac{1}{6}fx^{2}-4xf-f\times 12=0
Subtract f\times 12 from both sides.
\frac{1}{6}fx^{2}-4xf-12f=0
Multiply -1 and 12 to get -12.
\left(\frac{1}{6}x^{2}-4x-12\right)f=0
Combine all terms containing f.
\left(\frac{x^{2}}{6}-4x-12\right)f=0
The equation is in standard form.
f=0
Divide 0 by \frac{1}{6}x^{2}-12-4x.
f\in \emptyset
Variable f cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}