Evaluate
7t^{4}+t^{3}-\frac{7}{8}-\frac{1}{8t}
Expand
7t^{4}+t^{3}-\frac{7}{8}-\frac{1}{8t}
Share
Copied to clipboard
\left(\frac{7t}{t}+\frac{1}{t}\right)\left(t^{4}-\frac{1}{8}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 7 times \frac{t}{t}.
\frac{7t+1}{t}\left(t^{4}-\frac{1}{8}\right)
Since \frac{7t}{t} and \frac{1}{t} have the same denominator, add them by adding their numerators.
\frac{7t+1}{t}t^{4}-\frac{1}{8}\times \frac{7t+1}{t}
Use the distributive property to multiply \frac{7t+1}{t} by t^{4}-\frac{1}{8}.
\frac{\left(7t+1\right)t^{4}}{t}-\frac{1}{8}\times \frac{7t+1}{t}
Express \frac{7t+1}{t}t^{4} as a single fraction.
\left(7t+1\right)t^{3}-\frac{1}{8}\times \frac{7t+1}{t}
Cancel out t in both numerator and denominator.
7t^{4}+t^{3}-\frac{1}{8}\times \frac{7t+1}{t}
Use the distributive property to multiply 7t+1 by t^{3}.
7t^{4}+t^{3}+\frac{-\left(7t+1\right)}{8t}
Multiply -\frac{1}{8} times \frac{7t+1}{t} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(7t^{4}+t^{3}\right)\times 8t}{8t}+\frac{-\left(7t+1\right)}{8t}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7t^{4}+t^{3} times \frac{8t}{8t}.
\frac{\left(7t^{4}+t^{3}\right)\times 8t-\left(7t+1\right)}{8t}
Since \frac{\left(7t^{4}+t^{3}\right)\times 8t}{8t} and \frac{-\left(7t+1\right)}{8t} have the same denominator, add them by adding their numerators.
\frac{56t^{5}+8t^{4}-7t-1}{8t}
Do the multiplications in \left(7t^{4}+t^{3}\right)\times 8t-\left(7t+1\right).
\left(\frac{7t}{t}+\frac{1}{t}\right)\left(t^{4}-\frac{1}{8}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 7 times \frac{t}{t}.
\frac{7t+1}{t}\left(t^{4}-\frac{1}{8}\right)
Since \frac{7t}{t} and \frac{1}{t} have the same denominator, add them by adding their numerators.
\frac{7t+1}{t}t^{4}-\frac{1}{8}\times \frac{7t+1}{t}
Use the distributive property to multiply \frac{7t+1}{t} by t^{4}-\frac{1}{8}.
\frac{\left(7t+1\right)t^{4}}{t}-\frac{1}{8}\times \frac{7t+1}{t}
Express \frac{7t+1}{t}t^{4} as a single fraction.
\left(7t+1\right)t^{3}-\frac{1}{8}\times \frac{7t+1}{t}
Cancel out t in both numerator and denominator.
7t^{4}+t^{3}-\frac{1}{8}\times \frac{7t+1}{t}
Use the distributive property to multiply 7t+1 by t^{3}.
7t^{4}+t^{3}+\frac{-\left(7t+1\right)}{8t}
Multiply -\frac{1}{8} times \frac{7t+1}{t} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(7t^{4}+t^{3}\right)\times 8t}{8t}+\frac{-\left(7t+1\right)}{8t}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7t^{4}+t^{3} times \frac{8t}{8t}.
\frac{\left(7t^{4}+t^{3}\right)\times 8t-\left(7t+1\right)}{8t}
Since \frac{\left(7t^{4}+t^{3}\right)\times 8t}{8t} and \frac{-\left(7t+1\right)}{8t} have the same denominator, add them by adding their numerators.
\frac{56t^{5}+8t^{4}-7t-1}{8t}
Do the multiplications in \left(7t^{4}+t^{3}\right)\times 8t-\left(7t+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}