Solve for V
V=\frac{2890000000g}{667}
Solve for g
g=\frac{667V}{2890000000}
Share
Copied to clipboard
g\times 2\times \frac{1}{10000000}=\frac{2000\times 6.67\times 10^{-11}V}{1700^{2}}
Calculate 10 to the power of -7 and get \frac{1}{10000000}.
g\times \frac{1}{5000000}=\frac{2000\times 6.67\times 10^{-11}V}{1700^{2}}
Multiply 2 and \frac{1}{10000000} to get \frac{1}{5000000}.
g\times \frac{1}{5000000}=\frac{13340\times 10^{-11}V}{1700^{2}}
Multiply 2000 and 6.67 to get 13340.
g\times \frac{1}{5000000}=\frac{13340\times \frac{1}{100000000000}V}{1700^{2}}
Calculate 10 to the power of -11 and get \frac{1}{100000000000}.
g\times \frac{1}{5000000}=\frac{\frac{667}{5000000000}V}{1700^{2}}
Multiply 13340 and \frac{1}{100000000000} to get \frac{667}{5000000000}.
g\times \frac{1}{5000000}=\frac{\frac{667}{5000000000}V}{2890000}
Calculate 1700 to the power of 2 and get 2890000.
g\times \frac{1}{5000000}=\frac{667}{14450000000000000}V
Divide \frac{667}{5000000000}V by 2890000 to get \frac{667}{14450000000000000}V.
\frac{667}{14450000000000000}V=g\times \frac{1}{5000000}
Swap sides so that all variable terms are on the left hand side.
\frac{667}{14450000000000000}V=\frac{g}{5000000}
The equation is in standard form.
\frac{\frac{667}{14450000000000000}V}{\frac{667}{14450000000000000}}=\frac{g}{\frac{667}{14450000000000000}\times 5000000}
Divide both sides of the equation by \frac{667}{14450000000000000}, which is the same as multiplying both sides by the reciprocal of the fraction.
V=\frac{g}{\frac{667}{14450000000000000}\times 5000000}
Dividing by \frac{667}{14450000000000000} undoes the multiplication by \frac{667}{14450000000000000}.
V=\frac{2890000000g}{667}
Divide \frac{g}{5000000} by \frac{667}{14450000000000000} by multiplying \frac{g}{5000000} by the reciprocal of \frac{667}{14450000000000000}.
g\times 2\times \frac{1}{10000000}=\frac{2000\times 6.67\times 10^{-11}V}{1700^{2}}
Calculate 10 to the power of -7 and get \frac{1}{10000000}.
g\times \frac{1}{5000000}=\frac{2000\times 6.67\times 10^{-11}V}{1700^{2}}
Multiply 2 and \frac{1}{10000000} to get \frac{1}{5000000}.
g\times \frac{1}{5000000}=\frac{13340\times 10^{-11}V}{1700^{2}}
Multiply 2000 and 6.67 to get 13340.
g\times \frac{1}{5000000}=\frac{13340\times \frac{1}{100000000000}V}{1700^{2}}
Calculate 10 to the power of -11 and get \frac{1}{100000000000}.
g\times \frac{1}{5000000}=\frac{\frac{667}{5000000000}V}{1700^{2}}
Multiply 13340 and \frac{1}{100000000000} to get \frac{667}{5000000000}.
g\times \frac{1}{5000000}=\frac{\frac{667}{5000000000}V}{2890000}
Calculate 1700 to the power of 2 and get 2890000.
g\times \frac{1}{5000000}=\frac{667}{14450000000000000}V
Divide \frac{667}{5000000000}V by 2890000 to get \frac{667}{14450000000000000}V.
\frac{1}{5000000}g=\frac{667V}{14450000000000000}
The equation is in standard form.
\frac{\frac{1}{5000000}g}{\frac{1}{5000000}}=\frac{667V}{\frac{1}{5000000}\times 14450000000000000}
Multiply both sides by 5000000.
g=\frac{667V}{\frac{1}{5000000}\times 14450000000000000}
Dividing by \frac{1}{5000000} undoes the multiplication by \frac{1}{5000000}.
g=\frac{667V}{2890000000}
Divide \frac{667V}{14450000000000000} by \frac{1}{5000000} by multiplying \frac{667V}{14450000000000000} by the reciprocal of \frac{1}{5000000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}