Solve for g
g=\frac{19x}{100}-\frac{1}{50}
x\neq 0
Solve for x
x=\frac{100g+2}{19}
g\neq -\frac{1}{50}
Graph
Share
Copied to clipboard
g\times 10\times 10+2=19x
Multiply both sides of the equation by 10x, the least common multiple of x,5x,10.
g\times 100+2=19x
Multiply 10 and 10 to get 100.
g\times 100=19x-2
Subtract 2 from both sides.
100g=19x-2
The equation is in standard form.
\frac{100g}{100}=\frac{19x-2}{100}
Divide both sides by 100.
g=\frac{19x-2}{100}
Dividing by 100 undoes the multiplication by 100.
g=\frac{19x}{100}-\frac{1}{50}
Divide 19x-2 by 100.
g\times 10\times 10+2=19x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 10x, the least common multiple of x,5x,10.
g\times 100+2=19x
Multiply 10 and 10 to get 100.
19x=g\times 100+2
Swap sides so that all variable terms are on the left hand side.
19x=100g+2
The equation is in standard form.
\frac{19x}{19}=\frac{100g+2}{19}
Divide both sides by 19.
x=\frac{100g+2}{19}
Dividing by 19 undoes the multiplication by 19.
x=\frac{100g+2}{19}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}