Evaluate
\frac{14g}{5}
Differentiate w.r.t. g
\frac{14}{5} = 2\frac{4}{5} = 2.8
Share
Copied to clipboard
\frac{g\times \frac{12\times 7}{5\times 4}}{\frac{3}{2}}
Multiply \frac{12}{5} times \frac{7}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{g\times \frac{84}{20}}{\frac{3}{2}}
Do the multiplications in the fraction \frac{12\times 7}{5\times 4}.
\frac{g\times \frac{21}{5}}{\frac{3}{2}}
Reduce the fraction \frac{84}{20} to lowest terms by extracting and canceling out 4.
\frac{g\times \frac{21}{5}\times 2}{3}
Divide g\times \frac{21}{5} by \frac{3}{2} by multiplying g\times \frac{21}{5} by the reciprocal of \frac{3}{2}.
\frac{g\times \frac{21\times 2}{5}}{3}
Express \frac{21}{5}\times 2 as a single fraction.
\frac{g\times \frac{42}{5}}{3}
Multiply 21 and 2 to get 42.
g\times \frac{14}{5}
Divide g\times \frac{42}{5} by 3 to get g\times \frac{14}{5}.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{g\times \frac{12\times 7}{5\times 4}}{\frac{3}{2}})
Multiply \frac{12}{5} times \frac{7}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{g\times \frac{84}{20}}{\frac{3}{2}})
Do the multiplications in the fraction \frac{12\times 7}{5\times 4}.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{g\times \frac{21}{5}}{\frac{3}{2}})
Reduce the fraction \frac{84}{20} to lowest terms by extracting and canceling out 4.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{g\times \frac{21}{5}\times 2}{3})
Divide g\times \frac{21}{5} by \frac{3}{2} by multiplying g\times \frac{21}{5} by the reciprocal of \frac{3}{2}.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{g\times \frac{21\times 2}{5}}{3})
Express \frac{21}{5}\times 2 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{g\times \frac{42}{5}}{3})
Multiply 21 and 2 to get 42.
\frac{\mathrm{d}}{\mathrm{d}g}(g\times \frac{14}{5})
Divide g\times \frac{42}{5} by 3 to get g\times \frac{14}{5}.
\frac{14}{5}g^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{14}{5}g^{0}
Subtract 1 from 1.
\frac{14}{5}\times 1
For any term t except 0, t^{0}=1.
\frac{14}{5}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}