Solve for g
g=-\frac{7x}{3-x}
x\neq 0\text{ and }x\neq 3
Solve for x
x=-\frac{3g}{7-g}
g\neq 7\text{ and }g\neq 0
Graph
Share
Copied to clipboard
7g^{-1}x=x-3
Multiply both sides of the equation by 7.
7\times \frac{1}{g}x=x-3
Reorder the terms.
7\times 1x=gx+g\left(-3\right)
Variable g cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by g.
7x=gx+g\left(-3\right)
Multiply 7 and 1 to get 7.
gx+g\left(-3\right)=7x
Swap sides so that all variable terms are on the left hand side.
\left(x-3\right)g=7x
Combine all terms containing g.
\frac{\left(x-3\right)g}{x-3}=\frac{7x}{x-3}
Divide both sides by x-3.
g=\frac{7x}{x-3}
Dividing by x-3 undoes the multiplication by x-3.
g=\frac{7x}{x-3}\text{, }g\neq 0
Variable g cannot be equal to 0.
7g^{-1}x=x-3
Multiply both sides of the equation by 7.
7g^{-1}x-x=-3
Subtract x from both sides.
-x+7\times \frac{1}{g}x=-3
Reorder the terms.
-xg+7\times 1x=-3g
Multiply both sides of the equation by g.
-xg+7x=-3g
Multiply 7 and 1 to get 7.
\left(-g+7\right)x=-3g
Combine all terms containing x.
\left(7-g\right)x=-3g
The equation is in standard form.
\frac{\left(7-g\right)x}{7-g}=-\frac{3g}{7-g}
Divide both sides by 7-g.
x=-\frac{3g}{7-g}
Dividing by 7-g undoes the multiplication by 7-g.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}