Solve for g (complex solution)
g=\frac{y\sqrt{xz-1}}{x+3}
y\neq 0\text{ and }x\neq -3
Solve for g
g=\frac{y\sqrt{xz-1}}{x+3}
\left(x<0\text{ or }z\geq \frac{1}{x}\right)\text{ and }y\neq 0\text{ and }x\neq -3\text{ and }\left(x>0\text{ or }z\leq \frac{1}{x}\right)\text{ and }x\neq 0
Share
Copied to clipboard
\left(x+3\right)g=y\sqrt{zx-1}
Multiply both sides of the equation by y\left(x+3\right), the least common multiple of y,x+3.
\left(x+3\right)g=y\sqrt{xz-1}
The equation is in standard form.
\frac{\left(x+3\right)g}{x+3}=\frac{y\sqrt{xz-1}}{x+3}
Divide both sides by x+3.
g=\frac{y\sqrt{xz-1}}{x+3}
Dividing by x+3 undoes the multiplication by x+3.
\left(x+3\right)g=y\sqrt{zx-1}
Multiply both sides of the equation by y\left(x+3\right), the least common multiple of y,x+3.
\left(x+3\right)g=y\sqrt{xz-1}
The equation is in standard form.
\frac{\left(x+3\right)g}{x+3}=\frac{y\sqrt{xz-1}}{x+3}
Divide both sides by x+3.
g=\frac{y\sqrt{xz-1}}{x+3}
Dividing by x+3 undoes the multiplication by x+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}