Solve for f
f=\frac{\sqrt[8]{2}}{2x}
x\neq 0
Solve for x
x=\frac{\sqrt[8]{2}}{2f}
f\neq 0
Graph
Share
Copied to clipboard
fx=\sqrt{\frac{1}{2}\sqrt{\frac{1}{2}\times \frac{\sqrt{1}}{\sqrt{2}}}}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
fx=\sqrt{\frac{1}{2}\sqrt{\frac{1}{2}\times \frac{1}{\sqrt{2}}}}
Calculate the square root of 1 and get 1.
fx=\sqrt{\frac{1}{2}\sqrt{\frac{1}{2}\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
fx=\sqrt{\frac{1}{2}\sqrt{\frac{1}{2}\times \frac{\sqrt{2}}{2}}}
The square of \sqrt{2} is 2.
fx=\sqrt{\frac{1}{2}\sqrt{\frac{\sqrt{2}}{2\times 2}}}
Multiply \frac{1}{2} times \frac{\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
fx=\sqrt{\frac{1}{2}\sqrt{\frac{\sqrt{2}}{4}}}
Multiply 2 and 2 to get 4.
xf=\sqrt{\frac{\sqrt{\frac{\sqrt{2}}{4}}}{2}}
The equation is in standard form.
\frac{xf}{x}=\frac{1}{2^{\frac{7}{8}}x}
Divide both sides by x.
f=\frac{1}{2^{\frac{7}{8}}x}
Dividing by x undoes the multiplication by x.
fx=\sqrt{\frac{1}{2}\sqrt{\frac{1}{2}\times \frac{\sqrt{1}}{\sqrt{2}}}}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
fx=\sqrt{\frac{1}{2}\sqrt{\frac{1}{2}\times \frac{1}{\sqrt{2}}}}
Calculate the square root of 1 and get 1.
fx=\sqrt{\frac{1}{2}\sqrt{\frac{1}{2}\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
fx=\sqrt{\frac{1}{2}\sqrt{\frac{1}{2}\times \frac{\sqrt{2}}{2}}}
The square of \sqrt{2} is 2.
fx=\sqrt{\frac{1}{2}\sqrt{\frac{\sqrt{2}}{2\times 2}}}
Multiply \frac{1}{2} times \frac{\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
fx=\sqrt{\frac{1}{2}\sqrt{\frac{\sqrt{2}}{4}}}
Multiply 2 and 2 to get 4.
fx=\sqrt{\frac{\sqrt{\frac{\sqrt{2}}{4}}}{2}}
The equation is in standard form.
\frac{fx}{f}=\frac{1}{2^{\frac{7}{8}}f}
Divide both sides by f.
x=\frac{1}{2^{\frac{7}{8}}f}
Dividing by f undoes the multiplication by f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}