Skip to main content
Solve for t
Tick mark Image
Solve for f_t
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}x}(f_{t})x=\frac{1}{4}xt-\frac{1}{4}x^{2}+\frac{1}{8}x^{2}\left(-1\right)
Use the distributive property to multiply \frac{1}{4}x by t-x.
\frac{\mathrm{d}}{\mathrm{d}x}(f_{t})x=\frac{1}{4}xt-\frac{1}{4}x^{2}-\frac{1}{8}x^{2}
Multiply \frac{1}{8} and -1 to get -\frac{1}{8}.
\frac{\mathrm{d}}{\mathrm{d}x}(f_{t})x=\frac{1}{4}xt-\frac{3}{8}x^{2}
Combine -\frac{1}{4}x^{2} and -\frac{1}{8}x^{2} to get -\frac{3}{8}x^{2}.
\frac{1}{4}xt-\frac{3}{8}x^{2}=\frac{\mathrm{d}}{\mathrm{d}x}(f_{t})x
Swap sides so that all variable terms are on the left hand side.
\frac{1}{4}xt=\frac{\mathrm{d}}{\mathrm{d}x}(f_{t})x+\frac{3}{8}x^{2}
Add \frac{3}{8}x^{2} to both sides.
\frac{x}{4}t=\frac{3x^{2}}{8}
The equation is in standard form.
\frac{4\times \frac{x}{4}t}{x}=\frac{3x^{2}}{8\times \frac{x}{4}}
Divide both sides by \frac{1}{4}x.
t=\frac{3x^{2}}{8\times \frac{x}{4}}
Dividing by \frac{1}{4}x undoes the multiplication by \frac{1}{4}x.
t=\frac{3x}{2}
Divide \frac{3x^{2}}{8} by \frac{1}{4}x.