Solve for t
\left\{\begin{matrix}\\t=\frac{3x}{2}\text{, }&\text{unconditionally}\\t\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for f_t
f_{t}\in \mathrm{R}
x=\frac{2t}{3}\text{ or }x=0
Share
Copied to clipboard
\frac{\mathrm{d}}{\mathrm{d}x}(f_{t})x=\frac{1}{4}xt-\frac{1}{4}x^{2}+\frac{1}{8}x^{2}\left(-1\right)
Use the distributive property to multiply \frac{1}{4}x by t-x.
\frac{\mathrm{d}}{\mathrm{d}x}(f_{t})x=\frac{1}{4}xt-\frac{1}{4}x^{2}-\frac{1}{8}x^{2}
Multiply \frac{1}{8} and -1 to get -\frac{1}{8}.
\frac{\mathrm{d}}{\mathrm{d}x}(f_{t})x=\frac{1}{4}xt-\frac{3}{8}x^{2}
Combine -\frac{1}{4}x^{2} and -\frac{1}{8}x^{2} to get -\frac{3}{8}x^{2}.
\frac{1}{4}xt-\frac{3}{8}x^{2}=\frac{\mathrm{d}}{\mathrm{d}x}(f_{t})x
Swap sides so that all variable terms are on the left hand side.
\frac{1}{4}xt=\frac{\mathrm{d}}{\mathrm{d}x}(f_{t})x+\frac{3}{8}x^{2}
Add \frac{3}{8}x^{2} to both sides.
\frac{x}{4}t=\frac{3x^{2}}{8}
The equation is in standard form.
\frac{4\times \frac{x}{4}t}{x}=\frac{3x^{2}}{8\times \frac{x}{4}}
Divide both sides by \frac{1}{4}x.
t=\frac{3x^{2}}{8\times \frac{x}{4}}
Dividing by \frac{1}{4}x undoes the multiplication by \frac{1}{4}x.
t=\frac{3x}{2}
Divide \frac{3x^{2}}{8} by \frac{1}{4}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}