Solve for f_1
f_{1}=f_{n}x\left(1-f_{n}x\right)
x\neq 0\text{ and }f_{n}\neq \frac{1}{x}\text{ and }f_{n}\neq 0
Solve for f_n (complex solution)
f_{n}=-\frac{\sqrt{1-4f_{1}}-1}{2x}
f_{n}=\frac{\sqrt{1-4f_{1}}+1}{2x}\text{, }x\neq 0\text{ and }f_{1}\neq 0
Solve for f_n
f_{n}=-\frac{\sqrt{1-4f_{1}}-1}{2x}
f_{n}=\frac{\sqrt{1-4f_{1}}+1}{2x}\text{, }x\neq 0\text{ and }f_{1}\leq \frac{1}{4}\text{ and }f_{1}\neq 0
Graph
Share
Copied to clipboard
f_{n}\left(f_{n}x-1\right)\times 1x=-f_{1}
Variable f_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f_{1}\left(f_{n}x-1\right), the least common multiple of f_{1},1-f_{n}x.
\left(xf_{n}^{2}-f_{n}\right)\times 1x=-f_{1}
Use the distributive property to multiply f_{n} by f_{n}x-1.
\left(xf_{n}^{2}-f_{n}\right)x=-f_{1}
Use the distributive property to multiply xf_{n}^{2}-f_{n} by 1.
f_{n}^{2}x^{2}-f_{n}x=-f_{1}
Use the distributive property to multiply xf_{n}^{2}-f_{n} by x.
-f_{1}=f_{n}^{2}x^{2}-f_{n}x
Swap sides so that all variable terms are on the left hand side.
\frac{-f_{1}}{-1}=\frac{f_{n}x\left(f_{n}x-1\right)}{-1}
Divide both sides by -1.
f_{1}=\frac{f_{n}x\left(f_{n}x-1\right)}{-1}
Dividing by -1 undoes the multiplication by -1.
f_{1}=-f_{n}x\left(f_{n}x-1\right)
Divide f_{n}x\left(f_{n}x-1\right) by -1.
f_{1}=-f_{n}x\left(f_{n}x-1\right)\text{, }f_{1}\neq 0
Variable f_{1} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}