Solve for f_m (complex solution)
\left\{\begin{matrix}f_{m}=x-2m+\frac{m}{x}+2\text{, }&x\neq 0\\f_{m}\in \mathrm{C}\text{, }&x=0\text{ and }m=0\end{matrix}\right.
Solve for m (complex solution)
\left\{\begin{matrix}m=-\frac{x\left(x-f_{m}+2\right)}{1-2x}\text{, }&x\neq \frac{1}{2}\\m\in \mathrm{C}\text{, }&f_{m}=\frac{5}{2}\text{ and }x=\frac{1}{2}\end{matrix}\right.
Solve for f_m
\left\{\begin{matrix}f_{m}=x-2m+\frac{m}{x}+2\text{, }&x\neq 0\\f_{m}\in \mathrm{R}\text{, }&x=0\text{ and }m=0\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=-\frac{x\left(x-f_{m}+2\right)}{1-2x}\text{, }&x\neq \frac{1}{2}\\m\in \mathrm{R}\text{, }&f_{m}=\frac{5}{2}\text{ and }x=\frac{1}{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
f_{m}x=x^{2}-2\left(m-1\right)x+m
Multiply -1 and 2 to get -2.
f_{m}x=x^{2}+\left(-2m+2\right)x+m
Use the distributive property to multiply -2 by m-1.
f_{m}x=x^{2}-2mx+2x+m
Use the distributive property to multiply -2m+2 by x.
xf_{m}=x^{2}-2mx+2x+m
The equation is in standard form.
\frac{xf_{m}}{x}=\frac{x^{2}-2mx+2x+m}{x}
Divide both sides by x.
f_{m}=\frac{x^{2}-2mx+2x+m}{x}
Dividing by x undoes the multiplication by x.
f_{m}=x-2m+\frac{m}{x}+2
Divide x^{2}-2mx+2x+m by x.
x^{2}-2\left(m-1\right)x+m=f_{m}x
Swap sides so that all variable terms are on the left hand side.
x^{2}+\left(-2m+2\right)x+m=f_{m}x
Use the distributive property to multiply -2 by m-1.
x^{2}-2mx+2x+m=f_{m}x
Use the distributive property to multiply -2m+2 by x.
-2mx+2x+m=f_{m}x-x^{2}
Subtract x^{2} from both sides.
-2mx+m=f_{m}x-x^{2}-2x
Subtract 2x from both sides.
\left(-2x+1\right)m=f_{m}x-x^{2}-2x
Combine all terms containing m.
\left(1-2x\right)m=-x^{2}+f_{m}x-2x
The equation is in standard form.
\frac{\left(1-2x\right)m}{1-2x}=\frac{x\left(-x+f_{m}-2\right)}{1-2x}
Divide both sides by -2x+1.
m=\frac{x\left(-x+f_{m}-2\right)}{1-2x}
Dividing by -2x+1 undoes the multiplication by -2x+1.
f_{m}x=x^{2}-2\left(m-1\right)x+m
Multiply -1 and 2 to get -2.
f_{m}x=x^{2}+\left(-2m+2\right)x+m
Use the distributive property to multiply -2 by m-1.
f_{m}x=x^{2}-2mx+2x+m
Use the distributive property to multiply -2m+2 by x.
xf_{m}=x^{2}-2mx+2x+m
The equation is in standard form.
\frac{xf_{m}}{x}=\frac{x^{2}-2mx+2x+m}{x}
Divide both sides by x.
f_{m}=\frac{x^{2}-2mx+2x+m}{x}
Dividing by x undoes the multiplication by x.
f_{m}=x-2m+\frac{m}{x}+2
Divide x^{2}-2mx+2x+m by x.
x^{2}-2\left(m-1\right)x+m=f_{m}x
Swap sides so that all variable terms are on the left hand side.
x^{2}+\left(-2m+2\right)x+m=f_{m}x
Use the distributive property to multiply -2 by m-1.
x^{2}-2mx+2x+m=f_{m}x
Use the distributive property to multiply -2m+2 by x.
-2mx+2x+m=f_{m}x-x^{2}
Subtract x^{2} from both sides.
-2mx+m=f_{m}x-x^{2}-2x
Subtract 2x from both sides.
\left(-2x+1\right)m=f_{m}x-x^{2}-2x
Combine all terms containing m.
\left(1-2x\right)m=-x^{2}+f_{m}x-2x
The equation is in standard form.
\frac{\left(1-2x\right)m}{1-2x}=\frac{x\left(-x+f_{m}-2\right)}{1-2x}
Divide both sides by 1-2x.
m=\frac{x\left(-x+f_{m}-2\right)}{1-2x}
Dividing by 1-2x undoes the multiplication by 1-2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}