Solve for f_2
f_{2}=\frac{24}{g+10}
g\neq -10
Solve for g
g=-10+\frac{24}{f_{2}}
f_{2}\neq 0
Share
Copied to clipboard
f_{2}g+10f_{2}=24
Use the distributive property to multiply f_{2} by g+10.
\left(g+10\right)f_{2}=24
Combine all terms containing f_{2}.
\frac{\left(g+10\right)f_{2}}{g+10}=\frac{24}{g+10}
Divide both sides by g+10.
f_{2}=\frac{24}{g+10}
Dividing by g+10 undoes the multiplication by g+10.
f_{2}g+10f_{2}=24
Use the distributive property to multiply f_{2} by g+10.
f_{2}g=24-10f_{2}
Subtract 10f_{2} from both sides.
\frac{f_{2}g}{f_{2}}=\frac{24-10f_{2}}{f_{2}}
Divide both sides by f_{2}.
g=\frac{24-10f_{2}}{f_{2}}
Dividing by f_{2} undoes the multiplication by f_{2}.
g=-10+\frac{24}{f_{2}}
Divide 24-10f_{2} by f_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}