Factor
\left(2z-1\right)\left(3z-5\right)\left(3z+5\right)
Evaluate
\left(2z-1\right)\left(9z^{2}-25\right)
Share
Copied to clipboard
\left(3z-5\right)\left(6z^{2}+7z-5\right)
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 25 and q divides the leading coefficient 18. One such root is \frac{5}{3}. Factor the polynomial by dividing it by 3z-5.
a+b=7 ab=6\left(-5\right)=-30
Consider 6z^{2}+7z-5. Factor the expression by grouping. First, the expression needs to be rewritten as 6z^{2}+az+bz-5. To find a and b, set up a system to be solved.
-1,30 -2,15 -3,10 -5,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Calculate the sum for each pair.
a=-3 b=10
The solution is the pair that gives sum 7.
\left(6z^{2}-3z\right)+\left(10z-5\right)
Rewrite 6z^{2}+7z-5 as \left(6z^{2}-3z\right)+\left(10z-5\right).
3z\left(2z-1\right)+5\left(2z-1\right)
Factor out 3z in the first and 5 in the second group.
\left(2z-1\right)\left(3z+5\right)
Factor out common term 2z-1 by using distributive property.
\left(3z-5\right)\left(2z-1\right)\left(3z+5\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}