Solve for f (complex solution)
\left\{\begin{matrix}f=-\frac{y_{1}\left(2x-1\right)}{y^{2}}\text{, }&y\neq 0\\f\in \mathrm{C}\text{, }&\left(x=\frac{1}{2}\text{ or }y_{1}=0\right)\text{ and }y=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{fy^{2}}{2y_{1}}+\frac{1}{2}\text{, }&y_{1}\neq 0\\x\in \mathrm{C}\text{, }&\left(f=0\text{ or }y=0\right)\text{ and }y_{1}=0\end{matrix}\right.
Solve for f
\left\{\begin{matrix}f=-\frac{y_{1}\left(2x-1\right)}{y^{2}}\text{, }&y\neq 0\\f\in \mathrm{R}\text{, }&\left(x=\frac{1}{2}\text{ or }y_{1}=0\right)\text{ and }y=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{fy^{2}}{2y_{1}}+\frac{1}{2}\text{, }&y_{1}\neq 0\\x\in \mathrm{R}\text{, }&\left(f=0\text{ or }y=0\right)\text{ and }y_{1}=0\end{matrix}\right.
Graph
Share
Copied to clipboard
fy^{2}+2xy_{1}-y_{1}=0
Use the distributive property to multiply 2x-1 by y_{1}.
fy^{2}-y_{1}=-2xy_{1}
Subtract 2xy_{1} from both sides. Anything subtracted from zero gives its negation.
fy^{2}=-2xy_{1}+y_{1}
Add y_{1} to both sides.
y^{2}f=y_{1}-2xy_{1}
The equation is in standard form.
\frac{y^{2}f}{y^{2}}=\frac{y_{1}-2xy_{1}}{y^{2}}
Divide both sides by y^{2}.
f=\frac{y_{1}-2xy_{1}}{y^{2}}
Dividing by y^{2} undoes the multiplication by y^{2}.
f=\frac{y_{1}\left(1-2x\right)}{y^{2}}
Divide -2y_{1}x+y_{1} by y^{2}.
fy^{2}+2xy_{1}-y_{1}=0
Use the distributive property to multiply 2x-1 by y_{1}.
2xy_{1}-y_{1}=-fy^{2}
Subtract fy^{2} from both sides. Anything subtracted from zero gives its negation.
2xy_{1}=-fy^{2}+y_{1}
Add y_{1} to both sides.
2y_{1}x=y_{1}-fy^{2}
The equation is in standard form.
\frac{2y_{1}x}{2y_{1}}=\frac{y_{1}-fy^{2}}{2y_{1}}
Divide both sides by 2y_{1}.
x=\frac{y_{1}-fy^{2}}{2y_{1}}
Dividing by 2y_{1} undoes the multiplication by 2y_{1}.
x=-\frac{fy^{2}}{2y_{1}}+\frac{1}{2}
Divide y_{1}-fy^{2} by 2y_{1}.
fy^{2}+2xy_{1}-y_{1}=0
Use the distributive property to multiply 2x-1 by y_{1}.
fy^{2}-y_{1}=-2xy_{1}
Subtract 2xy_{1} from both sides. Anything subtracted from zero gives its negation.
fy^{2}=-2xy_{1}+y_{1}
Add y_{1} to both sides.
y^{2}f=y_{1}-2xy_{1}
The equation is in standard form.
\frac{y^{2}f}{y^{2}}=\frac{y_{1}-2xy_{1}}{y^{2}}
Divide both sides by y^{2}.
f=\frac{y_{1}-2xy_{1}}{y^{2}}
Dividing by y^{2} undoes the multiplication by y^{2}.
f=\frac{y_{1}\left(1-2x\right)}{y^{2}}
Divide -2y_{1}x+y_{1} by y^{2}.
fy^{2}+2xy_{1}-y_{1}=0
Use the distributive property to multiply 2x-1 by y_{1}.
2xy_{1}-y_{1}=-fy^{2}
Subtract fy^{2} from both sides. Anything subtracted from zero gives its negation.
2xy_{1}=-fy^{2}+y_{1}
Add y_{1} to both sides.
2y_{1}x=y_{1}-fy^{2}
The equation is in standard form.
\frac{2y_{1}x}{2y_{1}}=\frac{y_{1}-fy^{2}}{2y_{1}}
Divide both sides by 2y_{1}.
x=\frac{y_{1}-fy^{2}}{2y_{1}}
Dividing by 2y_{1} undoes the multiplication by 2y_{1}.
x=-\frac{fy^{2}}{2y_{1}}+\frac{1}{2}
Divide y_{1}-fy^{2} by 2y_{1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}