Solve for f (complex solution)
\left\{\begin{matrix}f=\frac{2x_{1}x_{2}-1}{2x_{1}x_{2}}\text{, }&x_{2}\neq 0\text{ and }x_{1}\neq 0\\f\in \mathrm{C}\text{, }&x_{1}=x_{2}\text{ and }x_{2}\neq 0\end{matrix}\right.
Solve for f
\left\{\begin{matrix}f=\frac{2x_{1}x_{2}-1}{2x_{1}x_{2}}\text{, }&x_{2}\neq 0\text{ and }x_{1}\neq 0\\f\in \mathrm{R}\text{, }&x_{1}=x_{2}\text{ and }x_{2}\neq 0\end{matrix}\right.
Solve for x_1
\left\{\begin{matrix}x_{1}=-\frac{1}{2x_{2}\left(f-1\right)}\text{, }&f\neq 1\text{ and }x_{2}\neq 0\\x_{1}=x_{2}\text{, }&x_{2}\neq 0\end{matrix}\right.
Share
Copied to clipboard
fx_{1}\times 2x_{1}x_{2}-fx_{2}\times 2x_{1}x_{2}=2x_{1}x_{2}\left(x_{1}+\frac{1}{2x_{1}}+\frac{1}{2}\right)-2x_{1}x_{2}\left(x_{2}+\frac{1}{2x_{2}}+\frac{1}{2}\right)
Multiply both sides of the equation by 2x_{1}x_{2}, the least common multiple of 2x_{1},2,2x_{2}.
fx_{1}^{2}\times 2x_{2}-fx_{2}\times 2x_{1}x_{2}=2x_{1}x_{2}\left(x_{1}+\frac{1}{2x_{1}}+\frac{1}{2}\right)-2x_{1}x_{2}\left(x_{2}+\frac{1}{2x_{2}}+\frac{1}{2}\right)
Multiply x_{1} and x_{1} to get x_{1}^{2}.
fx_{1}^{2}\times 2x_{2}-fx_{2}^{2}\times 2x_{1}=2x_{1}x_{2}\left(x_{1}+\frac{1}{2x_{1}}+\frac{1}{2}\right)-2x_{1}x_{2}\left(x_{2}+\frac{1}{2x_{2}}+\frac{1}{2}\right)
Multiply x_{2} and x_{2} to get x_{2}^{2}.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{1}x_{2}\left(x_{1}+\frac{1}{2x_{1}}+\frac{1}{2}\right)-2x_{1}x_{2}\left(x_{2}+\frac{1}{2x_{2}}+\frac{1}{2}\right)
Multiply -1 and 2 to get -2.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{1}x_{2}\left(x_{1}+\frac{1}{2x_{1}}+\frac{x_{1}}{2x_{1}}\right)-2x_{1}x_{2}\left(x_{2}+\frac{1}{2x_{2}}+\frac{1}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x_{1} and 2 is 2x_{1}. Multiply \frac{1}{2} times \frac{x_{1}}{x_{1}}.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{1}x_{2}\left(x_{1}+\frac{1+x_{1}}{2x_{1}}\right)-2x_{1}x_{2}\left(x_{2}+\frac{1}{2x_{2}}+\frac{1}{2}\right)
Since \frac{1}{2x_{1}} and \frac{x_{1}}{2x_{1}} have the same denominator, add them by adding their numerators.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+2x_{1}x_{2}\times \frac{1+x_{1}}{2x_{1}}-2x_{1}x_{2}\left(x_{2}+\frac{1}{2x_{2}}+\frac{1}{2}\right)
Use the distributive property to multiply 2x_{1}x_{2} by x_{1}+\frac{1+x_{1}}{2x_{1}}.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+\frac{2\left(1+x_{1}\right)}{2x_{1}}x_{1}x_{2}-2x_{1}x_{2}\left(x_{2}+\frac{1}{2x_{2}}+\frac{1}{2}\right)
Express 2\times \frac{1+x_{1}}{2x_{1}} as a single fraction.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+\frac{x_{1}+1}{x_{1}}x_{1}x_{2}-2x_{1}x_{2}\left(x_{2}+\frac{1}{2x_{2}}+\frac{1}{2}\right)
Cancel out 2 in both numerator and denominator.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+\frac{x_{1}+1}{x_{1}}x_{1}x_{2}-2x_{1}x_{2}\left(x_{2}+\frac{1}{2x_{2}}+\frac{x_{2}}{2x_{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x_{2} and 2 is 2x_{2}. Multiply \frac{1}{2} times \frac{x_{2}}{x_{2}}.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+\frac{x_{1}+1}{x_{1}}x_{1}x_{2}-2x_{1}x_{2}\left(x_{2}+\frac{1+x_{2}}{2x_{2}}\right)
Since \frac{1}{2x_{2}} and \frac{x_{2}}{2x_{2}} have the same denominator, add them by adding their numerators.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+\frac{\left(x_{1}+1\right)x_{1}}{x_{1}}x_{2}-2x_{1}x_{2}\left(x_{2}+\frac{1+x_{2}}{2x_{2}}\right)
Express \frac{x_{1}+1}{x_{1}}x_{1} as a single fraction.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+\left(x_{1}+1\right)x_{2}-2x_{1}x_{2}\left(x_{2}+\frac{1+x_{2}}{2x_{2}}\right)
Cancel out x_{1} in both numerator and denominator.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+x_{1}x_{2}+x_{2}-2x_{1}x_{2}\left(x_{2}+\frac{1+x_{2}}{2x_{2}}\right)
Use the distributive property to multiply x_{1}+1 by x_{2}.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+x_{1}x_{2}+x_{2}-2x_{1}x_{2}\left(\frac{x_{2}\times 2x_{2}}{2x_{2}}+\frac{1+x_{2}}{2x_{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x_{2} times \frac{2x_{2}}{2x_{2}}.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+x_{1}x_{2}+x_{2}-2x_{1}x_{2}\times \frac{x_{2}\times 2x_{2}+1+x_{2}}{2x_{2}}
Since \frac{x_{2}\times 2x_{2}}{2x_{2}} and \frac{1+x_{2}}{2x_{2}} have the same denominator, add them by adding their numerators.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+x_{1}x_{2}+x_{2}-2x_{1}x_{2}\times \frac{2x_{2}^{2}+1+x_{2}}{2x_{2}}
Do the multiplications in x_{2}\times 2x_{2}+1+x_{2}.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+x_{1}x_{2}+x_{2}-\frac{2\left(2x_{2}^{2}+1+x_{2}\right)}{2x_{2}}x_{1}x_{2}
Express 2\times \frac{2x_{2}^{2}+1+x_{2}}{2x_{2}} as a single fraction.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+x_{1}x_{2}+x_{2}-\frac{2x_{2}^{2}+x_{2}+1}{x_{2}}x_{1}x_{2}
Cancel out 2 in both numerator and denominator.
fx_{1}^{2}\times 2x_{2}x_{2}-2fx_{2}^{2}x_{1}x_{2}=x_{2}\left(2x_{2}x_{1}^{2}+x_{1}x_{2}+x_{2}\right)-\left(2x_{2}^{2}+x_{2}+1\right)x_{1}x_{2}
Multiply both sides of the equation by x_{2}.
fx_{1}^{2}\times 2x_{2}^{2}-2fx_{2}^{2}x_{1}x_{2}=x_{2}\left(2x_{2}x_{1}^{2}+x_{1}x_{2}+x_{2}\right)-\left(2x_{2}^{2}+x_{2}+1\right)x_{1}x_{2}
Multiply x_{2} and x_{2} to get x_{2}^{2}.
fx_{1}^{2}\times 2x_{2}^{2}-2fx_{2}^{3}x_{1}=x_{2}\left(2x_{2}x_{1}^{2}+x_{1}x_{2}+x_{2}\right)-\left(2x_{2}^{2}+x_{2}+1\right)x_{1}x_{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
fx_{1}^{2}\times 2x_{2}^{2}-2fx_{2}^{3}x_{1}=2x_{1}^{2}x_{2}^{2}+x_{1}x_{2}^{2}+x_{2}^{2}-\left(2x_{2}^{2}+x_{2}+1\right)x_{1}x_{2}
Use the distributive property to multiply x_{2} by 2x_{2}x_{1}^{2}+x_{1}x_{2}+x_{2}.
fx_{1}^{2}\times 2x_{2}^{2}-2fx_{2}^{3}x_{1}=2x_{1}^{2}x_{2}^{2}+x_{1}x_{2}^{2}+x_{2}^{2}+\left(-2x_{2}^{2}-x_{2}-1\right)x_{1}x_{2}
Use the distributive property to multiply -1 by 2x_{2}^{2}+x_{2}+1.
fx_{1}^{2}\times 2x_{2}^{2}-2fx_{2}^{3}x_{1}=2x_{1}^{2}x_{2}^{2}+x_{1}x_{2}^{2}+x_{2}^{2}+\left(-2x_{2}^{2}x_{1}-x_{2}x_{1}-x_{1}\right)x_{2}
Use the distributive property to multiply -2x_{2}^{2}-x_{2}-1 by x_{1}.
fx_{1}^{2}\times 2x_{2}^{2}-2fx_{2}^{3}x_{1}=2x_{1}^{2}x_{2}^{2}+x_{1}x_{2}^{2}+x_{2}^{2}-2x_{1}x_{2}^{3}-x_{1}x_{2}^{2}-x_{1}x_{2}
Use the distributive property to multiply -2x_{2}^{2}x_{1}-x_{2}x_{1}-x_{1} by x_{2}.
fx_{1}^{2}\times 2x_{2}^{2}-2fx_{2}^{3}x_{1}=2x_{1}^{2}x_{2}^{2}+x_{2}^{2}-2x_{1}x_{2}^{3}-x_{1}x_{2}
Combine x_{1}x_{2}^{2} and -x_{1}x_{2}^{2} to get 0.
\left(x_{1}^{2}\times 2x_{2}^{2}-2x_{2}^{3}x_{1}\right)f=2x_{1}^{2}x_{2}^{2}+x_{2}^{2}-2x_{1}x_{2}^{3}-x_{1}x_{2}
Combine all terms containing f.
\left(2x_{1}^{2}x_{2}^{2}-2x_{1}x_{2}^{3}\right)f=2x_{1}^{2}x_{2}^{2}-2x_{1}x_{2}^{3}-x_{1}x_{2}+x_{2}^{2}
The equation is in standard form.
\frac{\left(2x_{1}^{2}x_{2}^{2}-2x_{1}x_{2}^{3}\right)f}{2x_{1}^{2}x_{2}^{2}-2x_{1}x_{2}^{3}}=\frac{x_{2}\left(x_{1}-x_{2}\right)\left(2x_{1}x_{2}-1\right)}{2x_{1}^{2}x_{2}^{2}-2x_{1}x_{2}^{3}}
Divide both sides by 2x_{1}^{2}x_{2}^{2}-2x_{2}^{3}x_{1}.
f=\frac{x_{2}\left(x_{1}-x_{2}\right)\left(2x_{1}x_{2}-1\right)}{2x_{1}^{2}x_{2}^{2}-2x_{1}x_{2}^{3}}
Dividing by 2x_{1}^{2}x_{2}^{2}-2x_{2}^{3}x_{1} undoes the multiplication by 2x_{1}^{2}x_{2}^{2}-2x_{2}^{3}x_{1}.
f=1-\frac{1}{2x_{1}x_{2}}
Divide x_{2}\left(-1+2x_{1}x_{2}\right)\left(x_{1}-x_{2}\right) by 2x_{1}^{2}x_{2}^{2}-2x_{2}^{3}x_{1}.
fx_{1}\times 2x_{1}x_{2}-fx_{2}\times 2x_{1}x_{2}=2x_{1}x_{2}\left(x_{1}+\frac{1}{2x_{1}}+\frac{1}{2}\right)-2x_{1}x_{2}\left(x_{2}+\frac{1}{2x_{2}}+\frac{1}{2}\right)
Multiply both sides of the equation by 2x_{1}x_{2}, the least common multiple of 2x_{1},2,2x_{2}.
fx_{1}^{2}\times 2x_{2}-fx_{2}\times 2x_{1}x_{2}=2x_{1}x_{2}\left(x_{1}+\frac{1}{2x_{1}}+\frac{1}{2}\right)-2x_{1}x_{2}\left(x_{2}+\frac{1}{2x_{2}}+\frac{1}{2}\right)
Multiply x_{1} and x_{1} to get x_{1}^{2}.
fx_{1}^{2}\times 2x_{2}-fx_{2}^{2}\times 2x_{1}=2x_{1}x_{2}\left(x_{1}+\frac{1}{2x_{1}}+\frac{1}{2}\right)-2x_{1}x_{2}\left(x_{2}+\frac{1}{2x_{2}}+\frac{1}{2}\right)
Multiply x_{2} and x_{2} to get x_{2}^{2}.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{1}x_{2}\left(x_{1}+\frac{1}{2x_{1}}+\frac{1}{2}\right)-2x_{1}x_{2}\left(x_{2}+\frac{1}{2x_{2}}+\frac{1}{2}\right)
Multiply -1 and 2 to get -2.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{1}x_{2}\left(x_{1}+\frac{1}{2x_{1}}+\frac{x_{1}}{2x_{1}}\right)-2x_{1}x_{2}\left(x_{2}+\frac{1}{2x_{2}}+\frac{1}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x_{1} and 2 is 2x_{1}. Multiply \frac{1}{2} times \frac{x_{1}}{x_{1}}.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{1}x_{2}\left(x_{1}+\frac{1+x_{1}}{2x_{1}}\right)-2x_{1}x_{2}\left(x_{2}+\frac{1}{2x_{2}}+\frac{1}{2}\right)
Since \frac{1}{2x_{1}} and \frac{x_{1}}{2x_{1}} have the same denominator, add them by adding their numerators.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+2x_{1}x_{2}\times \frac{1+x_{1}}{2x_{1}}-2x_{1}x_{2}\left(x_{2}+\frac{1}{2x_{2}}+\frac{1}{2}\right)
Use the distributive property to multiply 2x_{1}x_{2} by x_{1}+\frac{1+x_{1}}{2x_{1}}.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+\frac{2\left(1+x_{1}\right)}{2x_{1}}x_{1}x_{2}-2x_{1}x_{2}\left(x_{2}+\frac{1}{2x_{2}}+\frac{1}{2}\right)
Express 2\times \frac{1+x_{1}}{2x_{1}} as a single fraction.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+\frac{x_{1}+1}{x_{1}}x_{1}x_{2}-2x_{1}x_{2}\left(x_{2}+\frac{1}{2x_{2}}+\frac{1}{2}\right)
Cancel out 2 in both numerator and denominator.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+\frac{x_{1}+1}{x_{1}}x_{1}x_{2}-2x_{1}x_{2}\left(x_{2}+\frac{1}{2x_{2}}+\frac{x_{2}}{2x_{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x_{2} and 2 is 2x_{2}. Multiply \frac{1}{2} times \frac{x_{2}}{x_{2}}.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+\frac{x_{1}+1}{x_{1}}x_{1}x_{2}-2x_{1}x_{2}\left(x_{2}+\frac{1+x_{2}}{2x_{2}}\right)
Since \frac{1}{2x_{2}} and \frac{x_{2}}{2x_{2}} have the same denominator, add them by adding their numerators.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+\frac{\left(x_{1}+1\right)x_{1}}{x_{1}}x_{2}-2x_{1}x_{2}\left(x_{2}+\frac{1+x_{2}}{2x_{2}}\right)
Express \frac{x_{1}+1}{x_{1}}x_{1} as a single fraction.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+\left(x_{1}+1\right)x_{2}-2x_{1}x_{2}\left(x_{2}+\frac{1+x_{2}}{2x_{2}}\right)
Cancel out x_{1} in both numerator and denominator.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+x_{1}x_{2}+x_{2}-2x_{1}x_{2}\left(x_{2}+\frac{1+x_{2}}{2x_{2}}\right)
Use the distributive property to multiply x_{1}+1 by x_{2}.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+x_{1}x_{2}+x_{2}-2x_{1}x_{2}\left(\frac{x_{2}\times 2x_{2}}{2x_{2}}+\frac{1+x_{2}}{2x_{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x_{2} times \frac{2x_{2}}{2x_{2}}.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+x_{1}x_{2}+x_{2}-2x_{1}x_{2}\times \frac{x_{2}\times 2x_{2}+1+x_{2}}{2x_{2}}
Since \frac{x_{2}\times 2x_{2}}{2x_{2}} and \frac{1+x_{2}}{2x_{2}} have the same denominator, add them by adding their numerators.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+x_{1}x_{2}+x_{2}-2x_{1}x_{2}\times \frac{2x_{2}^{2}+1+x_{2}}{2x_{2}}
Do the multiplications in x_{2}\times 2x_{2}+1+x_{2}.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+x_{1}x_{2}+x_{2}-\frac{2\left(2x_{2}^{2}+1+x_{2}\right)}{2x_{2}}x_{1}x_{2}
Express 2\times \frac{2x_{2}^{2}+1+x_{2}}{2x_{2}} as a single fraction.
fx_{1}^{2}\times 2x_{2}-2fx_{2}^{2}x_{1}=2x_{2}x_{1}^{2}+x_{1}x_{2}+x_{2}-\frac{2x_{2}^{2}+x_{2}+1}{x_{2}}x_{1}x_{2}
Cancel out 2 in both numerator and denominator.
fx_{1}^{2}\times 2x_{2}x_{2}-2fx_{2}^{2}x_{1}x_{2}=x_{2}\left(2x_{2}x_{1}^{2}+x_{1}x_{2}+x_{2}\right)-\left(2x_{2}^{2}+x_{2}+1\right)x_{1}x_{2}
Multiply both sides of the equation by x_{2}.
fx_{1}^{2}\times 2x_{2}^{2}-2fx_{2}^{2}x_{1}x_{2}=x_{2}\left(2x_{2}x_{1}^{2}+x_{1}x_{2}+x_{2}\right)-\left(2x_{2}^{2}+x_{2}+1\right)x_{1}x_{2}
Multiply x_{2} and x_{2} to get x_{2}^{2}.
fx_{1}^{2}\times 2x_{2}^{2}-2fx_{2}^{3}x_{1}=x_{2}\left(2x_{2}x_{1}^{2}+x_{1}x_{2}+x_{2}\right)-\left(2x_{2}^{2}+x_{2}+1\right)x_{1}x_{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
fx_{1}^{2}\times 2x_{2}^{2}-2fx_{2}^{3}x_{1}=2x_{1}^{2}x_{2}^{2}+x_{1}x_{2}^{2}+x_{2}^{2}-\left(2x_{2}^{2}+x_{2}+1\right)x_{1}x_{2}
Use the distributive property to multiply x_{2} by 2x_{2}x_{1}^{2}+x_{1}x_{2}+x_{2}.
fx_{1}^{2}\times 2x_{2}^{2}-2fx_{2}^{3}x_{1}=2x_{1}^{2}x_{2}^{2}+x_{1}x_{2}^{2}+x_{2}^{2}+\left(-2x_{2}^{2}-x_{2}-1\right)x_{1}x_{2}
Use the distributive property to multiply -1 by 2x_{2}^{2}+x_{2}+1.
fx_{1}^{2}\times 2x_{2}^{2}-2fx_{2}^{3}x_{1}=2x_{1}^{2}x_{2}^{2}+x_{1}x_{2}^{2}+x_{2}^{2}+\left(-2x_{2}^{2}x_{1}-x_{2}x_{1}-x_{1}\right)x_{2}
Use the distributive property to multiply -2x_{2}^{2}-x_{2}-1 by x_{1}.
fx_{1}^{2}\times 2x_{2}^{2}-2fx_{2}^{3}x_{1}=2x_{1}^{2}x_{2}^{2}+x_{1}x_{2}^{2}+x_{2}^{2}-2x_{1}x_{2}^{3}-x_{1}x_{2}^{2}-x_{1}x_{2}
Use the distributive property to multiply -2x_{2}^{2}x_{1}-x_{2}x_{1}-x_{1} by x_{2}.
fx_{1}^{2}\times 2x_{2}^{2}-2fx_{2}^{3}x_{1}=2x_{1}^{2}x_{2}^{2}+x_{2}^{2}-2x_{1}x_{2}^{3}-x_{1}x_{2}
Combine x_{1}x_{2}^{2} and -x_{1}x_{2}^{2} to get 0.
\left(x_{1}^{2}\times 2x_{2}^{2}-2x_{2}^{3}x_{1}\right)f=2x_{1}^{2}x_{2}^{2}+x_{2}^{2}-2x_{1}x_{2}^{3}-x_{1}x_{2}
Combine all terms containing f.
\left(2x_{1}^{2}x_{2}^{2}-2x_{1}x_{2}^{3}\right)f=2x_{1}^{2}x_{2}^{2}-2x_{1}x_{2}^{3}-x_{1}x_{2}+x_{2}^{2}
The equation is in standard form.
\frac{\left(2x_{1}^{2}x_{2}^{2}-2x_{1}x_{2}^{3}\right)f}{2x_{1}^{2}x_{2}^{2}-2x_{1}x_{2}^{3}}=\frac{x_{2}\left(x_{1}-x_{2}\right)\left(2x_{1}x_{2}-1\right)}{2x_{1}^{2}x_{2}^{2}-2x_{1}x_{2}^{3}}
Divide both sides by 2x_{1}^{2}x_{2}^{2}-2x_{2}^{3}x_{1}.
f=\frac{x_{2}\left(x_{1}-x_{2}\right)\left(2x_{1}x_{2}-1\right)}{2x_{1}^{2}x_{2}^{2}-2x_{1}x_{2}^{3}}
Dividing by 2x_{1}^{2}x_{2}^{2}-2x_{2}^{3}x_{1} undoes the multiplication by 2x_{1}^{2}x_{2}^{2}-2x_{2}^{3}x_{1}.
f=1-\frac{1}{2x_{1}x_{2}}
Divide x_{2}\left(-1+2x_{1}x_{2}\right)\left(x_{1}-x_{2}\right) by 2x_{1}^{2}x_{2}^{2}-2x_{2}^{3}x_{1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}