f ( x - 2 ) = 5 ( x + 3
Solve for f
f=\frac{5\left(x+3\right)}{x-2}
x\neq 2
Solve for x
x=\frac{2f+15}{f-5}
f\neq 5
Graph
Share
Copied to clipboard
fx-2f=5\left(x+3\right)
Use the distributive property to multiply f by x-2.
fx-2f=5x+15
Use the distributive property to multiply 5 by x+3.
\left(x-2\right)f=5x+15
Combine all terms containing f.
\frac{\left(x-2\right)f}{x-2}=\frac{5x+15}{x-2}
Divide both sides by x-2.
f=\frac{5x+15}{x-2}
Dividing by x-2 undoes the multiplication by x-2.
f=\frac{5\left(x+3\right)}{x-2}
Divide 15+5x by x-2.
fx-2f=5\left(x+3\right)
Use the distributive property to multiply f by x-2.
fx-2f=5x+15
Use the distributive property to multiply 5 by x+3.
fx-2f-5x=15
Subtract 5x from both sides.
fx-5x=15+2f
Add 2f to both sides.
\left(f-5\right)x=15+2f
Combine all terms containing x.
\left(f-5\right)x=2f+15
The equation is in standard form.
\frac{\left(f-5\right)x}{f-5}=\frac{2f+15}{f-5}
Divide both sides by f-5.
x=\frac{2f+15}{f-5}
Dividing by f-5 undoes the multiplication by f-5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}