Solve for f (complex solution)
\left\{\begin{matrix}f=-\frac{5-3x}{2xy\left(2x+1\right)}\text{, }&y\neq 0\text{ and }x\neq -\frac{1}{2}\text{ and }x\neq 0\\f\in \mathrm{C}\text{, }&y=0\text{ and }x=\frac{5}{3}\end{matrix}\right.
Solve for f
\left\{\begin{matrix}f=-\frac{5-3x}{2xy\left(2x+1\right)}\text{, }&y\neq 0\text{ and }x\neq -\frac{1}{2}\text{ and }x\neq 0\\f\in \mathrm{R}\text{, }&y=0\text{ and }x=\frac{5}{3}\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{9+4\left(fy\right)^{2}-92fy}-2fy+3}{8fy}\text{; }x=\frac{-\sqrt{9+4\left(fy\right)^{2}-92fy}-2fy+3}{8fy}\text{, }&f\neq 0\text{ and }y\neq 0\\x=-\frac{5}{2fy-3}\text{, }&f=0\text{ or }y=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{9+4\left(fy\right)^{2}-92fy}-2fy+3}{8fy}\text{; }x=\frac{-\sqrt{9+4\left(fy\right)^{2}-92fy}-2fy+3}{8fy}\text{, }&\left(f\geq \frac{8\sqrt{130}|y|+92y}{8y^{2}}\text{ or }f\leq -\frac{8\sqrt{130}|y|-92y}{8y^{2}}\right)\text{ and }f\neq 0\text{ and }y\neq 0\\x=-\frac{5}{2fy-3}\text{, }&f=0\text{ or }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
fxy\times 2\left(2x+1\right)=3x-5
Multiply both sides of the equation by 2\left(2x+1\right).
4fx^{2}y+fxy\times 2=3x-5
Use the distributive property to multiply fxy\times 2 by 2x+1.
\left(4x^{2}y+xy\times 2\right)f=3x-5
Combine all terms containing f.
\left(2xy+4yx^{2}\right)f=3x-5
The equation is in standard form.
\frac{\left(2xy+4yx^{2}\right)f}{2xy+4yx^{2}}=\frac{3x-5}{2xy+4yx^{2}}
Divide both sides by 2xy+4yx^{2}.
f=\frac{3x-5}{2xy+4yx^{2}}
Dividing by 2xy+4yx^{2} undoes the multiplication by 2xy+4yx^{2}.
f=\frac{3x-5}{2xy\left(2x+1\right)}
Divide 3x-5 by 2xy+4yx^{2}.
fxy\times 2\left(2x+1\right)=3x-5
Multiply both sides of the equation by 2\left(2x+1\right).
4fx^{2}y+fxy\times 2=3x-5
Use the distributive property to multiply fxy\times 2 by 2x+1.
\left(4x^{2}y+xy\times 2\right)f=3x-5
Combine all terms containing f.
\left(2xy+4yx^{2}\right)f=3x-5
The equation is in standard form.
\frac{\left(2xy+4yx^{2}\right)f}{2xy+4yx^{2}}=\frac{3x-5}{2xy+4yx^{2}}
Divide both sides by 2xy+4yx^{2}.
f=\frac{3x-5}{2xy+4yx^{2}}
Dividing by 2xy+4yx^{2} undoes the multiplication by 2xy+4yx^{2}.
f=\frac{3x-5}{2xy\left(2x+1\right)}
Divide 3x-5 by 2xy+4yx^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}