Solve for f
f=\frac{x}{x^{3}+1}
x\neq 0\text{ and }x\neq -1
Graph
Share
Copied to clipboard
fx^{-1}\left(x+1\right)\left(x^{2}-x+1\right)=1
Multiply both sides of the equation by \left(x+1\right)\left(x^{2}-x+1\right).
\left(fx^{-1}x+fx^{-1}\right)\left(x^{2}-x+1\right)=1
Use the distributive property to multiply fx^{-1} by x+1.
fx^{-1}x^{3}+fx^{-1}=1
Use the distributive property to multiply fx^{-1}x+fx^{-1} by x^{2}-x+1 and combine like terms.
fx^{2}+fx^{-1}=1
To multiply powers of the same base, add their exponents. Add -1 and 3 to get 2.
fx^{2}+\frac{1}{x}f=1
Reorder the terms.
fx^{2}x+1f=x
Multiply both sides of the equation by x.
fx^{3}+1f=x
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
fx^{3}+f=x
Reorder the terms.
\left(x^{3}+1\right)f=x
Combine all terms containing f.
\frac{\left(x^{3}+1\right)f}{x^{3}+1}=\frac{x}{x^{3}+1}
Divide both sides by x^{3}+1.
f=\frac{x}{x^{3}+1}
Dividing by x^{3}+1 undoes the multiplication by x^{3}+1.
f=\frac{x}{\left(x+1\right)\left(x^{2}-x+1\right)}
Divide x by x^{3}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}