Evaluate
3x-2
Expand
3x-2
Graph
Share
Copied to clipboard
x-\left(x^{2}-2x+1\right)-\left(x+1\right)\left(1-x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x-x^{2}+2x-1-\left(x+1\right)\left(1-x\right)
To find the opposite of x^{2}-2x+1, find the opposite of each term.
3x-x^{2}-1-\left(x+1\right)\left(1-x\right)
Combine x and 2x to get 3x.
3x-x^{2}-1-\left(1-x^{2}\right)
Consider \left(x+1\right)\left(1-x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
3x-x^{2}-1-1+x^{2}
To find the opposite of 1-x^{2}, find the opposite of each term.
3x-x^{2}-2+x^{2}
Subtract 1 from -1 to get -2.
3x-2
Combine -x^{2} and x^{2} to get 0.
x-\left(x^{2}-2x+1\right)-\left(x+1\right)\left(1-x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x-x^{2}+2x-1-\left(x+1\right)\left(1-x\right)
To find the opposite of x^{2}-2x+1, find the opposite of each term.
3x-x^{2}-1-\left(x+1\right)\left(1-x\right)
Combine x and 2x to get 3x.
3x-x^{2}-1-\left(1-x^{2}\right)
Consider \left(x+1\right)\left(1-x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
3x-x^{2}-1-1+x^{2}
To find the opposite of 1-x^{2}, find the opposite of each term.
3x-x^{2}-2+x^{2}
Subtract 1 from -1 to get -2.
3x-2
Combine -x^{2} and x^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}