Solve for a
\left\{\begin{matrix}a=\frac{\sin(2x)+3fx-3x}{3\sin(x)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\\a\in \mathrm{R}\text{, }&x=0\text{ or }\left(f=\frac{-\frac{\sin(2x)}{x}+3}{3}\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\right)\end{matrix}\right.
Solve for f
\left\{\begin{matrix}f=\frac{\frac{3a\sin(x)}{x}-\frac{\sin(2x)}{x}+3}{3}\text{, }&x\neq 0\\f\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
x-\frac{1}{3}\sin(2x)+a\sin(x)=fx
Swap sides so that all variable terms are on the left hand side.
a\sin(x)=fx-\left(x-\frac{1}{3}\sin(2x)\right)
Subtract x-\frac{1}{3}\sin(2x) from both sides.
a\sin(x)=fx-x+\frac{1}{3}\sin(2x)
To find the opposite of x-\frac{1}{3}\sin(2x), find the opposite of each term.
\sin(x)a=\frac{\sin(2x)}{3}+fx-x
The equation is in standard form.
\frac{\sin(x)a}{\sin(x)}=\frac{\sin(2x)+3x\left(f-1\right)}{3\sin(x)}
Divide both sides by \sin(x).
a=\frac{\sin(2x)+3x\left(f-1\right)}{3\sin(x)}
Dividing by \sin(x) undoes the multiplication by \sin(x).
fx=x-\frac{1}{3}\sin(2x)+a\sin(x)
Multiply -1 and \frac{1}{3} to get -\frac{1}{3}.
xf=a\sin(x)-\frac{\sin(2x)}{3}+x
The equation is in standard form.
\frac{xf}{x}=\frac{\sin(x)\left(-2\cos(x)+3a\right)+3x}{3x}
Divide both sides by x.
f=\frac{\sin(x)\left(-2\cos(x)+3a\right)+3x}{3x}
Dividing by x undoes the multiplication by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}