Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{5}-5x^{4}+12x^{3}-24x^{2}+32x-16=0
To factor the expression, solve the equation where it equals to 0.
±16,±8,±4,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -16 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{4}-4x^{3}+8x^{2}-16x+16=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{5}-5x^{4}+12x^{3}-24x^{2}+32x-16 by x-1 to get x^{4}-4x^{3}+8x^{2}-16x+16. To factor the result, solve the equation where it equals to 0.
±16,±8,±4,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 16 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{3}-2x^{2}+4x-8=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{4}-4x^{3}+8x^{2}-16x+16 by x-2 to get x^{3}-2x^{2}+4x-8. To factor the result, solve the equation where it equals to 0.
±8,±4,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -8 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}+4=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-2x^{2}+4x-8 by x-2 to get x^{2}+4. To factor the result, solve the equation where it equals to 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 4}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 0 for b, and 4 for c in the quadratic formula.
x=\frac{0±\sqrt{-16}}{2}
Do the calculations.
x^{2}+4
Polynomial x^{2}+4 is not factored since it does not have any rational roots.
\left(x-1\right)\left(x-2\right)^{2}\left(x^{2}+4\right)
Rewrite the factored expression using the obtained roots.