Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-2\right)\left(x^{3}-3x^{2}+4\right)
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -8 and q divides the leading coefficient 1. One such root is 2. Factor the polynomial by dividing it by x-2.
\left(x-2\right)\left(x^{2}-x-2\right)
Consider x^{3}-3x^{2}+4. By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 4 and q divides the leading coefficient 1. One such root is 2. Factor the polynomial by dividing it by x-2.
a+b=-1 ab=1\left(-2\right)=-2
Consider x^{2}-x-2. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
a=-2 b=1
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(x^{2}-2x\right)+\left(x-2\right)
Rewrite x^{2}-x-2 as \left(x^{2}-2x\right)+\left(x-2\right).
x\left(x-2\right)+x-2
Factor out x in x^{2}-2x.
\left(x-2\right)\left(x+1\right)
Factor out common term x-2 by using distributive property.
\left(x+1\right)\left(x-2\right)^{3}
Rewrite the complete factored expression.